1- Put (√) for right and (X) for wrong for the following statements:
(10)

√or X			
	1- Surface film condition is used to define the lubrication of contacting surface.		
	2-The density is not essential on simulation using implicit FE.		
	3-On meshing materials with interfaces, elements cannot cross interfaces.		
	4- Cells partition makes meshing more difficult.		
	5-FE-simulation of a machining process is carried out by "implicit" FE-analysis		
	6- Axi-symmetric part is sketched by revolution.		
	7- FE-simulation of machining processes is modeled by "explicit" FE-analysis.		
	8-Finite volume method is used to simulate materials with solid volume.		
	9- The minimum increment time should be higher than initial increment time.		
	10- Elastic properties are not needed for the rigid bodies.		

2- A- Using a graph show the effect of the element aspect ratio on the accuracy of the results (3)

3- (a) For a simple spring, proof that the Element Stiffness Matrix is : (3)

$$|k\rangle = \begin{bmatrix} k & -k \\ -k & k \end{bmatrix}$$

3-b. For the spring assemblage shown below, using the direct stiffness method

- The elemental stiffness matrices find:
 - The global stiffness matrix a)
 - Determine the nodal displacements, b)
 - The forces in each element and the reactions c) d)

500 k

For element 10

a)

4

B- With the knowledge of ultimate tensile strength (σ_{UIS}) and the strain at fracture (ε_F) show suing the relation between the true stress (σ') and true strain (φ) : $\sigma' = k(\varphi)^n$ how to get the flow curve of this material? (3)

C - Describe the content of five (5) different files accompanying the FEsimulation method. (5)

File	Description	