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Objectives

» The objectives of this chapter are to introduce the concepts of one
dimensional elements and shape functions and their properties. The idea
of local and nature coordinate systems will also be presented.




Temperature distribution for a fin of uniform
Cross section
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A The temperature distribution along

| Actual temperature profile the element may be interpolated
|\ or approximated using a linear

I\ Approximate temperature profile function us depected in the figure.

The linear temperature distribution
for a typical element may be
expressed as:
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Linear approximation of temperature
distribution for an element.
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The element’s temperature
distribution in terms of its nodal
values is:
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= Grouping the T, ferms together and T;terms together, we obtain:
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= We now define the shape function §; and §; according to equations :
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Properties of shape functions

®» The shape functions possess unique properties that are important for us understand
because they simplify the evaluation of certain integrals when we are deriving the
conductance or stiffness matrices. One of the inherent properties of a shape function
Is that it has a value of unity at its corresponding node and has a value of zero at the
other adjacent node.

» Demonstration
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= Where u; and u; represent the deflections of nodes i and j of an arbitrary
element (e) it should be clear by now that we can represent the spatial
variation of any unknown variable over a given element by using shape
functions and the corresponding nodal values. Thus, in general, we can
write:

o< sl

» Where y, and v, represent the nodal values of the unknown variable, such
the temperature, or deflection, or velocity, ..




» |t can also be readily shown that for linear shape functions, the sum of the
derivatives with respect to X is zero. That is,

dX A =X dX X, =X, X, -X, X, -X,




Linear shape functions.




Example1 :The nodal temperatures and their
corresponding positions along the fin in example 5.1.
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We have used linear one dimensional elements to approximate the temperature
distribution along a fin. the nodal temperatures and their corresponding positions are
shown in the figure Bellow. What is the temperature of the fin at X=4cm and X=8cm.




a. The temperature of the fin at X’ = 4 cm is represented by element (2):

X;— X X-X
T® = SPT, + SPT, = =2 Lt TE

15

e B
(34) = 36.3°C

5-4
T=>"——(41) +

- -

b. The temperature of the fin at X = 8 cm is represented by element (3);

X4_X X_Xq

T = §OT, + SOT, = T, + ) T

10 — 8 8 —5
T =———(34) + ——(20) = 256°C

For this example, note the difference between Séz} and S?}i
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tion and using linear elements, the

Vertical displacements f the column at various floor-cofumn connection ponts were de

S

i

termined to be
ru; )
| (003283
(= (005784 )
i (00750
s 008442

The modulus of elasticity of £ = 29 10 bfn’,an

the calculations. A detaled analysis of this problem

dareaof A = 397" were usedin
isgivenin Chapter 4, For now, gven



Figure 5.1 Deflection of a steel column
subject to floor loading.
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the nodal displacement values, we are interested in determining the deflections of points
A and B.

(a) Using the global coordinate Y, the displacement of point A is represented by ele-
ment (1):

,-Y Y -Y
uﬂ} = S{E]ul + ng-l]uz = —E-E'——u] + ,f lu?_

15 - 10 10 -0
+
15 ) 15

(0.03283) = 0.02188 in.

u:

(b) The displacement of point B is represented by element (4):
. -Y Y - Y.
= Sl S = 2w

60 — 52 52 — 45
= =5 (007504) + =

U= (0.08442) = 0.07941 in.



QUADRATIC ELEMENTS

We can increase the accuracy of our finite element findings either by increasing the num-
ber of linear elements used in the analysis or by using higher order interpolation func-
tions. For example, we can employ a quadratic function to represent the spatial variation
of an unknown variable. Using a quadratic function instead of a linear function requires

that we use three nodes to define an element. We need three nodes to define an element
because in order to fit a quadratic function, we need three points. The third point can
be created by placing a node. such as node &, in the middle of an element, as shown in
Figure 5.5. Referring to the previous example of a fin, using quadratic approximation,
the temperature distribution for a typical element can be represented by

TEE} — & T EEX . 3 ﬂEXE (513)




Quadratic approximation of the temperature
distribution for an element.

» X

and the nodal values are
T=T, at X=X, (5.19)
T=T, at X=X,
T=T at X=X
Three equations and three unknowns are created upon substitution of the nodal values
into Eq. (5.18):
T Sy 4 65X ks (3.20)
T, = ¢ + &X; + e, X2
T, = ¢ + aX; + c}Xf

Solving for ¢y, ¢,, and ¢; and rearranging terms leads to the element’s temperature dis-
tribution in terms of the nodal values and the shape functions:

T"E} — Sfo ~Fr S}.’I—} + Ska (5.21)
In matrix form, the above expression is
T;
T = 8. S Sy T, (5.22)

T



where the shape functions are
2
5, = 5 (X~ X)(X ~ X (5.23)
2
5= 73X ~ X)(X - X
—4
=g X - HEX - X)

In general, for a given element the variation of any parameter W in terms of its nodal
values may be written as

v;
WO =[S, 8§ SV, (5.24)
Wy

It is important to note here that the quadratic shape functions possess properties
similar to those of the linear shape functions; that 1s, (1) a shape function has a value
of unity at its corresponding node and a value of zero at the other adjacent node, and
(2) if we sum up the shape functions, we will again come up with a value of unity. The
main difference between linear shape functions and quadratic shape functions is in their
derivatives. The derivatives of the quadratic shape functions with respect to X are not
constant.
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5.3 CUBIC ELEMENTS

The quadratic interpolation functions offer good results in finite
element formulations However, if additional accuracy is
needed, we can resort to even higher order interpolation
functions, such as third order polynomials. Thus, we can use
cubic functions to represent the spatial variation of a given
variable. Utilizihng a cubic function instead of a quadratic
function requires that we use four nodes to define an element.
We need four nodes to define an element because in order to
fit a third order polynomial, we need four points. The element is

- divided into three equal lengths. The placement of the four

nodes is depicted in the figure.

Referring to the previous example of a fin, using cubic
approximation, the temperature distribution for a typicadl
element can be represented by:

T¢=c +c,X +c. X *+c X"



and the nodal values are

T=T at X=X, (5.26)
TP=T; at X=X
T = s ¥=X.
F=T = X=X

Four equations and four unknowns are created upon substitution of the nodal values
into Eq. (5.25). Solving for ¢y, ¢, ¢3, and ¢, and rearranging terms leads to the element’s
temperature distribution in terms of the nodal values and the shape functions:

TY = 8§T; + §;T; + $;Ti + SuTn (3:2T)
In matrix form, the above expression is
F T‘! b’
T.
Thek—] 8. S5 Se Saly ¢ (5.28)
I
| (o




where the shape functions are

9
5= 5 (X~ X)X - X)X - X,,) (5.29)

5= o (X = X)(X — X)(X ~ X,)

1
_ 27
2¢°

27
Sp = 5 (X~ X)X ~ X)(X ~ X;)

Sk {X o XI)(X o J(j)(X o Xm)




It is worth noting that when the order of the interpolating function increases, it
is necessary to employ Lagrange interpolation functions instead of taking the above
approach to obtain the shape functions. The main advantage the Lagrange method offers
is that using it, we do not have to solve a set of equations simultaneously to obtain the
unknown coefficients of the interpolating function. Instead, we represent the shape
functions in terms of the products of three linear functions. For cubic interpolating

functions, the shape function associated with each node can be represented in terms of
the product of three linear functions. For a given node —for example, i —we select the
functions such that their product will produce a value of zero at other nodes—namely, j,
k, and m—and a value of unity at the given node, i. Moreover, the product of the func-
tions must produce linear and nonlinear terms similar to the ones given by a general
third-order polynomial function.

To demonstrate this method, let us consider node i, with the global coordinate X'
First, the functions must be selected such that when evaluated at nodes j, k, and m, the
outcome is a value of zero. We select

S5i = ﬂi{X B X;)(X o Xk)(X - Xm) {530)



which satisfies the above condition. That is, if you substitute for X = X, or X = X, or
X = X,,, the value of §, is zero. We then evaluate a, such that when the shape function
§; 1s evaluated at node (X = X)), it will produce a value of unity:

2
1 = ﬂl(Xj = Xi')(XI = Xﬁ)(xl o Xm) = al(_{})(_g)(_;)

Solving for a,, we get

9
“= 30

and substituting into Eq. (5.30), we have

5=~ (X — X)(X — X)(X — X,,)

_F
The other shape functions are obtained in a similar fashion. Keeping in mind the expla-
nation offered above, we can generate shape functions of an (N — 1)-order polynomial
directly from the Lagrange polynomial formula:



o 1"_‘[ X — X, omitting (X — Xg) B (X — X)X — X)) (X — Xy)
> ir=1 Xg — Xy omitting (Xg — Xy) (Xg — X)X — Xp) -+ - (X — Xy)

(5.31)

Note that in order to accommodate any order polynomial representation in Eq. (5.31)
numeral values are assigned to the nodes and the subscripts of the shape functions.

In general, using a cubic interpolation function, the variation of any parameter W
in terms of its nodal values may be written as

PO =15 S S SJ9

v

h, m

Once again, note that the cubic shape functions possess properties similar to those of
the linear and the quadratic shape functions; that is, (1) a shape function has a value of
unity at its corresponding node and a value of zero at the other adjacent node, and (2) if
we sum up the shape functions, we will come up with a value of unity. However, note
that taking the spatial derivative of cubic shape functions will produce quadratic results.




5.4 GLOBAL, LOCAL, AND NATURAL COORDINATES

Most often. in finite element modeling, it is convenient to use several frames of ref-
erence, as we briefly discussed in Chapters 3 and 4. We need a global coordinate
system to represent the location of each node, orientation of each element, and to
apply boundary conditions and loads (in terms of their respective global components).
Moreover, the solution, such as nodal displacements, is generally represented with
respect to the global directions. On the other hand, we need to employ local and natu-
ral coordinates because they offer certain advantages when we construct the geometry
or compute integrals. The advantage becomes apparent particularly when the integrals
contain products of shape functions. For one-dimensional elements, the relationship
between a global coordinate X and a local coordinate x is given by X = X, + x, as
shown in Figure 5.7

Global . X

Local o
Node i ' Node j
4? ?_
e x;

- e -




The relationship between a global coordinate X
and a local coordinate x.

Substituting for X in terms of the local coordinate x in Egs. (5.8) and (5.9), we get

X.— X X.— (X +x) x
— : == : i == — —
S = 7 7 1 7 (5.32)
_X_Xf_(X:'_I_I}_XE X
Sj = 7 = 7 =7 (5.33)

where the local coordinate x varies from 0 to €;thati1s0 = x = {.




One-Dimensional Linear Natural Coordinates

Natural coordinates are basically local coordinates in a dimensionless form. It is often
necessary to use numerical methods to evaluate integrals for the purpose of calculating
elemental stiffness or conductance matrices. Natural coordinates offer the convenience
of having —1 and 1 for the limits of integration. For example, if we let

2x

¢€=4-1

where x is the local coordinate, then we can specify the coordinates of node i as —1 and
node j by 1. This relationship is shown in Figure 3.8.
We can obtain the natural linear shape functions by substituting for x in terms of

¢ into Eqgs. (5.32) and (5.33). This substitution yields
1
5,=5(1-¢) (5:34)

1
=501+ (535)



Natural linear shape functions possess the same properties as linear shape functions;
that 1s, a shape function has a value of unity at its corresponding node and has a value of

| ;
£=—1 ==
Local x - E=1
Node i Node j _ , ,
® 9 Figure 5.8 The relationship between the local
X X coordinate x and the natural coordinate §.
i ]

- ‘ -

zero at the adjacent node in a given element. As an example, the temperature distribu-
tion over an element of a one-dimensional fin may expressed by

1 1
T = 8T+ 5T =51 ~ O+, L+ 8T, (5.36)

Itisclearthatat{ = —1,T = T;andat¢é =1, T =T,




EXAMPLE 5.3

Determine the temperature of the fin in Example 5.1 at the global location X = 8 cm
using local coordinates. Also determine the temperature of the fin at the global location
X = 7.5 cm using natural coordinates.

a. Using local coordinates, we find that the temperature of the fin at X = 8 cm is
represented by element (3) according to the equation

TG} — 5(33}?-'3 e Sf}T,i = (]. == %)T; i %T;;

Note that element (3) has a length of 5 cm, and the location of a point 8 cm from
the base 1s represented by the local coordinate x = 3:

3 3 .
o= (1 - g)(}#) + 5 (20) = 256°C

Tﬂlfldz ISQC
Thase= 50°C | frope ) g
"H_h____._ 1 -
| T 41
1 2 3 3 4 2R
L2 @ 3 3) 4 ey Bg
\ T4 y, \ 20

‘4—2 Cm—h-‘-i—:s CIl—> |- Sem— =

L



b. Using natural coordinates, we find that the temperature of the fin at X = 7.5 cm
is represented by element (3) according to the equation

: 1 1
T = SP0+5PT, = S (1 = P+ S {1 + T,

Because the point with the global coordinate X' = 7.5 cm is located in the middle
of element (3), the natural coordinate of this point is given by £ = (:

T® = %(1 — 0)(34) + %(1 + 0)(20) = 27°C




One-Dimensional Natural Quadratic
and Cubic Shape Functions

The natural one-dimensional quadratic and cubic shape functions can be obtained in
a way similar to the method discussed in the previous section. The quadratic natural
shape functions are

1
5= &1 - 8) (5.37)
1
§j=7€01+§ (5.38)
Se=(1+81-¢ (539)
The natural one-dimensional cubic shape functions are

1

5= 2= (1 - HGE + DEE - 1) (5.40)
[

5= 11+ £)GE + DBE - 1) (5.41)
9

Se= o (L+ &)~ DB - 1) (5:42)

9
Sn=1c(1+ 81~ HBE+ 1 (5.43)



EXAMPLE 5.4
X.I'
Evaluate the integral / Sde using (a) global coordinates and (b) local coordinates.
Xi

a. Using global coordinates, we obtain

X

> N x - X\
/ S2dX = ( ) dX = %{X — X))

b. Using local coordinates, we obtain

[, 5o [ (E)er- 5,

This simple example demonstrates that local coordinates offer a simple way to evaluate
integrals containing products of shape functions.
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Table 5.1 One-dimensional shape
functions (1 or2)

Interpolation [unction

In terms of global coordinate X
Xi=X=X%

In terms of local coordinate x
l=x=¢

In terms of natural coordinate £
-1=§f=1

_ X —X I s =L
Linear 8 = ; i = 7 J—Ef £)
x e .
e ¢ 5,—{ 5;—EU+-_H
drati 5, = S(X - X)X — X, s=(=-1)2[Z)-1 5= —t(1 =
Duadratic _.—F( il Ag) E = 47 = 2.': £)
2 X . 1

P

_4 r - . -
Se = —{X — X)(X - X)

Se= (1 —§)N1+§)




In terms of global coordinate X In terms of local coordinate x

In terms of natural coordinate ¢
Interpolation function XisX=sX O=sx=<¢ =] 2 &=}
Cubi § = = X = XM= XD s=aly-2l2 a2\ 1-3= S, = —(1 — £)3¢ + 1)(3¢-1)
ame : 268 } il 2 % A S ¢ {716 i e

S; = i(x - X)X — X)X — Xa) g=XY, _of E\Y 1 -2 S = L(l + £)(3E + 1)(3¢-1)

2e ‘ " P2\ e\” ¢ e P16 o S

Si = 20X - X)X - X)X — X) s, = A=V 2 -3(=)) 1= (= Sy = —(1 + E)(E-1)3¢-1)

k 2(3 i J m r = ) -(- Fa 7 . ? k 16 SIS b y

2
5= -2

o

~

3
J

9
X - X)X - X)X - X) 5, =2 f)((f) . 1)(1 . (f)) Se=<(1 + )1~ OGE + 1)




5.6  NUMERICAL INTEGRATION: GAUSS-LEGENDRE QUADRATURE

As we discussed earlier, natural coordinates are basically local coordinates in a dimen-
sionless form. Moreover, most finite element programs perform element numerical
integration by Gaussian quadratures, and as the limit of integration, they use an inter-
val from —1 to 1. This approach is taken because when the function being integrated
is known, the Gauss—Legendre formulae offer a more efficient way of evaluating an
integral as compared to other numerical integration methods such as the trapezoidal
method. Whereas the trapezoidal method or Simpson’s method can be used to evalu-
ate integrals dealing with discrete data (see Problem 24), the Gauss—Legendre method
is based on the evaluation of a known function at nonuniformally spaced points to
compute the integral. The two-point Gauss—Legendre formula is developed next in this
section. The basic goal behind the Gauss-Legendre formulae is to represent an integral
in terms of the sum of the product of certain weighting coefficients and the value of the
function at some selected points. So, we begin with

b n
= f flx)dx = > w,f(x) (5.44)
: i=1




Next, we must ask (1) How do we determine the value of the weighting coefficients,
represented by the w;’s? (2) Where do we evaluate the function, or in other words, how

do we select these points (x;)? We begin by changing the limits of integration from a to b
to —1 to 1 with the introduction of the variable A such that

X =cyt+ A

Matching the limits, we get

a = ¢+ ¢i(—1)
b= ¢y + ¢;(1)
and solving for ¢, and c,, we have
_ (b +a)
0=
and
_(b—a
G = —p
Therefore,
xz(b;”)Jr(b;a)A (5.45)
and
A i Y (5.46)

2




Thus, using Eqgs. (5.45) and (5.46), we find that any integral in the form of Eq. (5.44) can
be expressed in terms of an integral with its limits at —1 and 1:

n

1
1= [ 1= 3w (5.47)
1

i=1

The two-point Gauss—Legendre formulation requires the determination of two
weighting factors w, and w, and two sampling points A, and A, to evaluate the func-
tion at these points. Because there are four unknowns, four equations are created using
Legendre polynomials (1, A, X, X’) as follows:

1

wfO) + wifin) = [ 1dr=2
1
1

w1 f(Ay) + waf(Ay) = / Adr =10
1
1

w ) + w:f) = [ Far=3
=k

1

w1 f(A) + waf(A) = / Xdr=0

=1




The above equations lead to the equations

wi(1) + w(1) = 2
wi(A) + wy(Ay) =0

2
wy(A)* + wy(Ay)? = 3

W1(:\1)3 + wE(ﬁg)E =0

Solving for w,,w,. A;. and A,, we have w, = w, = 1, A, = —0.577350269, and
A, = 0.577350269. The weighting factors and the 2, 3, 4, and 5 sampling points for
Gauss—Legendre formulae are given in Table 5.2. Note that as the number of sampling
points increases, so does the accuracy of the calculations. As you will see in Chapter 7,
we can readily extend the Gauss—Legendre quadrature formulation to two- or three
dimensional problems.




TABLE 5.2 Weighting factors and sampling points for Gauss—Legendre formulae

Points (1) Weighting factors (w;) Sampling points (A;)
2 w, = 1.00000000 A, = —0.577350269
w, = 1.00000000 A, = 0577350269
3 w; = 0.55555556 Ay = —0.774596669
w, = (.BB388E89 A= 0
wy = 1.55555556 Ay = 0774596669
4 w; = 0.3478548 Ay = —0.861136312
w, = 0.6521452 A, = —0.339981044
w, = 0.6521452 A; = 0339981044
wy = 0.3478548 Ay = 0.861136312
5 w; = 0.2369269 Ay = —0.506179846
w, = .4786287 A, = —.538469310
wy = (.5688889 A= 10
w, = 0.4786287 Ay = (0.5384659310
ws = 0.2369269 As =  0.906179846




TABLE 5.1 One-dimensiomal shape fone tions

In terms of glohal coardinaie X

In terms of beal coandimis x

I terms af natom] coordnnie §

Tnterpakition function NsYs=sX 0y ¢ 1=
Linear -'irlj;I 5.—|—§ 5—%“—:]
slvf:'t'r .'-'.I—II _'5':,.—%(1-.5]
Cundratic 5= %q:l:'— XX - X g, = [:%- |)|sz;) - |J 5= —;m -8
5, viﬁqx —XNX - X) 5, = I:T’Iz[:fj]— 1:| 5= ;iEH + £
5 = THX - XX - X) s=q2)-(2)) S= -1+ 8
Cuhic 5 = —-:—ff— TP S ATH B 5 = %[11 o %)f? —A(%D(I —.'!.|:5D 5= ﬁn — BN + TN
\ : :

&
Q

T ;
S = S - I - X)X - X)

Fi :
5o = ﬁ—:‘(.!t"— XHE — XX — K]

5= {1+ B + 13- 1)
B i -
5 = (1 + EE-13-1)

g
S _Eﬂ + £ —£)FE +1)




EXAMPLE 5.5

6
Evaluate the integral [ = / (x* + 5x + 3) dx using the Gauss—Legendre two-point
2

sampling formula.

This integral i1s simple and can be evaluated analytically, leading to the solution
I = 161.333333333. The purpose of this example is to demonstrate the Gauss—Legendre
procedure. We begin by changing the variable x to A by using Eq. (5.45). So, we obtain

(bta) (b—a. (GBG+2) (-2 N
x = 7 + > A= > + 7 A=4+2)
and
dI:(b—a) (6 — 2)

dA = dA = 2 dA
2 2






Thus, the integral I can be expressed in terms of A:
Ax) fln)

'Er ol T L =

1
I= /2 (# + Sx + 3)dx = f_ l(2)[(4 + 202 + 5(4 + 2A) + 3)]dA

Using the Gauss—Legendre two-point formula and Table 5.2, we compute the value of
the integral [ from

I = wif(h) + waf(As)

From Table 5.2, we find that w;, = w, = 1, and evaluating f(A) at A; = —0.577350269
and A, = 0.577350269, we obtain

fid) = ()[4 + 2(—0.577350269)P + 5(4 + 2(—0.577350269) + 3)] = 50.6444526769
firy) = ()[4 + 2(0.577350269) + 5(4 + 2(0.577350269) + 3)] = 110.688880653
I = (1)(50.6444526769) + (1)110.688880653 = 161.33333333




EXAMPLE 5.6
Xf
Evaluate the integral f Sde in Example 5.4 using the Gauss-Legendre two-point
X,
formula. i
Recall from Egq. (5.35) that §; = L1 + &) and by differentiating the relationship

between the local coordinate x and the natural coordinate £ (ie., £ = 7 1=
d¢ = %dx) we find dx = % dé. Also note that for this problem, £ = A. So,

X X/xy — x.\2 £/ \2 e M1 2
_ 21y — J — il - =
= /X Vs :{( f )'ﬂ_[:.(f) dx_Zf_i[z(Hﬂ] *

Using the Gauss—Legendre two-point formula and Table 5.2, we compute the value of
the integral [ from

I'= w f(A) +wf(A)



From Table 5.2, we find that w;, = w, = 1, and evaluating f(A) at A, = —0.577350269
and A, = 0.577350269, we obtain

12 - 12

fl&) = g %(1 + &) =§ %(1 — 0.577350269) | = 0.022329099389¢

— =7 _ -2
f(&) = g %(1 + &) | = ¢ %(1 + 0.577350269) | = 0.31100423389¢

I = (1)(0.022329099389¢) + (1)(0.31100423389¢) = 0.333333333¢

Note that the above result 1s identical to the results of Example 5.4.




