Mechanical Eng. Dept. ME 352

Taibah University

College of Engineering

Problem (1)

(A) Choose the correct answer:

- a- Helical gears are:
 - 1- has low working noise than spur gears
 - 2- same noise as spur gears
 - 3- has high working noise than spur gears
- b- Gear module equals:
 - 1- N/d where N is number of teeth and d is the pitch circle diameter
 - 2- d x N
 - 3- d/N
- c- Rigidity of shafts is related to :
 - 1- Resulted stresses
 - 2- Resulted lateral defection
 - 3- Resulted twisting angle
- d- Rolling bearings can sustain:
 - 1- Bending and reaction forces
 - 2- Torsion and reaction forces
 - 3- Reaction forces only
- e- rolling bearings has friction :
 - 1- more than sliding bearings
 - 2- less than sliding bearings
 - 3- equal to sliding bearings
- f- For the same power transmission, spur gears will have design factor of safety:
 - 1- Equal to helical gear
 - 2- More than helical gear of same size
 - 3- Less than helical gear
- g- Flat belt has standard size and length:
 - 1- Correct
 - 2- False
- h- The bending stress educed in gears teeth must be compared to:
 - 1- Teeth surface hardness
 - 2- Teeth strength
 - 3- Material creep
- i- The effect of buckling must be taken into consideration when the shaft is subjected to:
 - 1- Axial compression load
 - 2- Axial tension load

- j- In the front wheel drive cars, the front axle is considered as:
 - 1- Shaft
 - 2- Not shaft
- (B) If SKF bearing with dynamic capacity (C= 20 kN and C₀= 16 kN) is used for a pump shaft rotates with 1000 RPM and under axial load = 0.5 kN and Radial load = 10 kN, determine its expected life in working hours.

Problem (2)

The following figure shows a water pump operated by an electric motor through an open type **V-belt** drive. The motor pulley diameter = **100 mm**, pump pulley diameter = **300 mm**, Coefficient of friction for belt with pulleys = **0.32**, Center distance between the two pulleys= **850 mm**; Rotational speed of the motor= **1500 RPM**; Power transmission= **20 kW**; allowable stress for the belt material (**S**_{all})= **2 MPa**; thickness of the belt= **4 mm**.

- a- Find the belt length
- b- Find the belt tensioning forces
- c- If the belt permissible tension force is not to exceed **800 N**, how many belts will you need?

Problem (3)

A countershaft carrying two flat-belt pulleys is shown in the following figure. Pulley **A** receives a torque of **300 Nm** from a motor through a belt as shown in figure below. The power is transmitted through the shaft and delivered to the belt on pulley **B**. The belt tensioning forces on pulley **A** are **1800** and **270 N** and the belt tensioning forces on pulley **B** are **3000** and **552 N**.

(a) Draw the bending-moment diagram for the shaft.

(b) Find the safety factor of the shaft (allowable shear strength= 40 MPa)

<u>Helpful Data</u>

For Belts and Pulleys

$$\theta_{1} = 180 - 2\sin^{-1}(\frac{D-d}{2C})$$

$$\theta_{2} = 180 + 2\sin^{-1}(\frac{D-d}{2C})$$

$$L = \sqrt{4C^{2} - (D - d)^{2}} + \frac{1}{2}(D - \theta_{2} + d\theta_{1})$$

$$F_{1} - F_{2} \frac{d}{2} = T$$

$$\frac{F_{1}}{F_{2}} = e^{\mu \theta}$$

Bearing Selection

$$F_{e} = XVF_{r} + YF_{a}$$
$$L = \left[\frac{C}{F_{e}}\right]^{3}$$

F _a /C ₀	e	$F_a/(VF_r) \leq e$		$F_{a}/(VF_{r}) > e$	
		X 1	Y1	X2	Y2
0.014*	0.19	1.00	0	0.56	2.30
0.021	0.21	1.00	0	0.56	2.15
0.028	0.22	1.00	0	0.56	1.99
0.042	0.24	1.00	0	0.56	1.85
0.056	0.26	1.00	0	0.56	1.71

ASME Eq. for shaft design

$$d_{o} = \left[\frac{16}{\pi S_{sallow.}(1 - \lambda^{4})} \sqrt{\left(k_{b}M_{b} + \frac{\alpha F d_{o}(1 + \lambda^{2})}{8}\right)^{2} + \left(K_{t}M_{t}\right)^{2}}\right]^{1/3}$$
$$\theta = \frac{TL}{GJ} \quad (rad .)$$