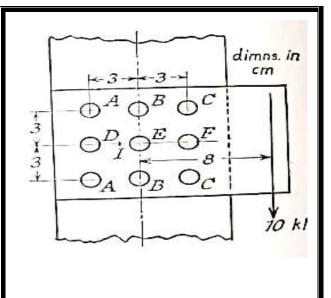


Student Name:	
Student ID:	

Academic Year	Semester	Exam period	Exam date				
1441/1442	2 nd	Final Exam	29/04/2021				
(2020/2021)			(17-9-1442H)				
Course Code	Course Title	Course level	Exam duration				
AME 3010	Mechanical Engineering Design	8	3 hrs.				
Instructor Name: Prof. Mahir Es-Saheb							

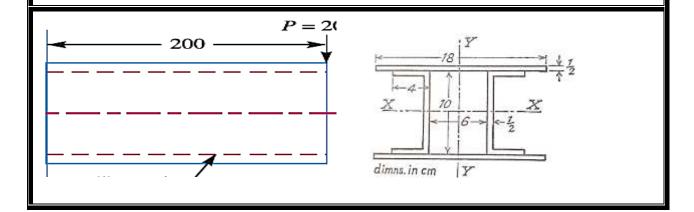
General Instructions:


- Answer ALL questions.
 Assume any missing data, if any.
 - 3. Use neat-labelled sketches.

Question	1	2	3	4		Total
CLO No. (and %)	1-3	3-6	5-7	6-8		
	(100%)	(100%)	(100%)	(100%)		
Full mark	20	20	20	20		80
Student Marks						

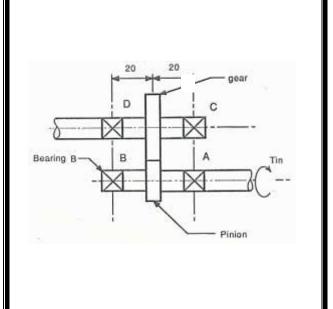
QUESTION 1 [20 Marks]

The shown structure is bolted to the wall by means of **9** AISI1020 steel bolts A, B, C etc. and supports a load F = 10kN.


- (a) Calculate the maximum force acting on the bolts. [8 Marks]
- (b) Determine the appropriate bolt size using Von- Mises theory with a safety factor of 4. [4Marks]
- (c) If the load instead is varied from F = 3kN to F= 9kN and the four bottom bolts (E, F,B and C) are <u>removed</u>; determine the fatigue safety factor in this case if the bolt size and material are the same as found in (b). [8Marks]

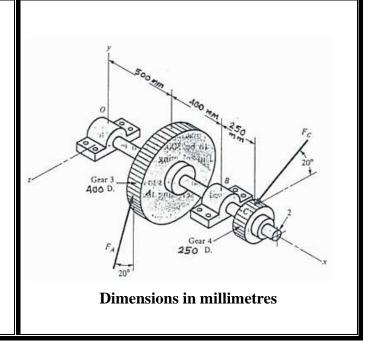
QUESTION 2 [20 Marks]

The welded structure shown, is fabricated by welding steel plates of 0.5 cm thickness to the two C-channels along the top and bottom flanges (4 cm side). This structure supports a vertical load P which varies from 2 kN to 10 kN; and an axial tensile force F varies from 1.5kN to 3kN acting at the centroid of the section. Determine the weld size required for a fatigue safety factor of 1.75 for the weld if an electrode of AWS 90 number is used. The solution should include:


- i- Force analysis complete with proper and clear **FBD**. [4 Marks]
- ii- Complete and systematic stress analysis of the welds showing the critical points. [12 Marks]
- iii- The calculation steps and formulas of the fatigue. [4 Marks]

QUESTION 3 [20 Marks]

The figure shows a pair of shaft-mounted spur gears having a 16-tooth 20° pinion driving a 64-tooth gear. The power input is 24kW maximum at 3600rpm. The pinion is hobbed from AISI1040 Q&T steel and the gear is made from AISI1015 CD steel. The gears are intended for mild service and average mounting conditions.


- a. Find the suitable values for the module and face width, based on bending stress of the gears using a factor of safety of 1.5. [14 Marks]
- b. For the calculated face width, determine the safety factor for surface endurance (contact stresses). [6 Marks]

QUESTION 4 [20 Marks]

The figure shows a countershaft that running at 360rpm and supports two gears A and C. The force on gear A is $F_A = 2670N$. The reaction forces at O are $F_{Oy} = 1727N$ and $F_{Oz} = 2096N$; meanwhile, at B are $F_{By} = 1411N$ and $F_{Bz} = -7209N$. Use an application factor of 1.2, a life of 40 kh and a reliability of 98%.

- (a) Select an angular contact ball bearing at O if it is subjected to an extra thrust load of 200N. [10 Marks]
- (b) Select a straight roller bearing at B if it is subjected to an extra thrust load of 320N. [10 Marks]

