<u>ME211</u>

Homework on Equilibrium Phase Diagrams

The equilibrium phase diagram of Cu-Ag alloy system is given below. Answer the following for an alloy that contains X% Ag (X differs according to group no. as per table below),

Group no.	1	2	3	4	5	6
X wt.%Ag	5	25	50	80	90	95

- (a) Draw schematically the cooling curve and show temperatures arrests (temperature values at which phase changes occur).
- (b) Conduct a complete phase analysis as per the table below.
- (c) At 400°C , find the relative amount (wt.%) of $\alpha_{Eut.}$ for hypo-eutectic alloys or $\beta_{Eut.}$ for hyper-eutectic alloys

Answer sheet

time

(b)

Temperature	Phases	Wt.% Ag (show on phase diagram)	Phase amount (Show the calculations)	Microstructure	
$T_l + \Delta T$					
$T_l - \Delta T$					
$T_E + \Delta T$	α	e.g 30		a e	
	θ	e.g. 43			
$T_E - \Delta T$					
$T_s + \Delta T$					
$T_s - \Delta T$					
500°C					

(c)

At $T_E + \Delta T \rightarrow \alpha_{pro} = \dots$ At 400°C $\rightarrow \alpha_{Total} = \dots$ Thus, $\alpha_{Eut.} = \alpha_{Total} - \alpha_{pro} = \dots$