## Homework #2

1. Determine  $v_1$ ,  $v_2$ ,  $v_3$  and  $v_4$  in the circuit below.



2. Determine  $v_1$  and  $v_2$  in the circuit below.



3. Find  $v_1$  and  $v_2$  in the circuit below.



4. Find  $i_1$  and  $i_2$  in the circuit below.



5. For the ladder network find I and  $R_{eq}$ .



6. Calculate the equivalent resistance  $R_{ab}$  at terminals *a-b* for each of the circuits



![](_page_2_Figure_3.jpeg)

7. Convert the circuits from Y to  $\Delta$ .

![](_page_2_Figure_5.jpeg)

8. Transform the circuits from  $\Delta$  to Y.

![](_page_2_Figure_7.jpeg)

- 2Ω WW 4Ω  $v_1$  $v_2$ 6A  $v_1$  $v_2$ 8Ω 2Ω 10 A 6 A 10 Ω ≥ 5Ω 4Ω 3 A --(a) **(b)**
- 9. Write the nodal equations for the networks below, and solve for  $v_1$  and  $v_2$ .

10.Write the nodal equations for the networks below, and solve for the nodal voltages.

![](_page_3_Figure_6.jpeg)

11. Apply mesh analysis to find current *i* flowing in 1  $\Omega$  resistor as shown.

![](_page_3_Figure_8.jpeg)

12.Using mesh analysis, find the current through each resistor in the networks.

![](_page_4_Figure_4.jpeg)

13.Using mesh analysis, find the current through each resistor in the networks.

![](_page_4_Figure_6.jpeg)