Ch.6 Forced Convection

ME203 – HEAT TRANSFER

Instructor:

ABDULRAHMAN ALANSARI, Ph.D.

College of Engineering

Email: a.alansari@ubt.edu.sa

Introduction

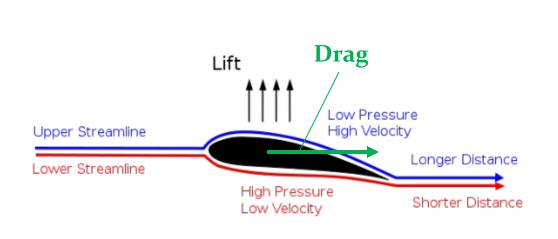
- Previously, we discussed fundamental of convection
 - Type of flow: laminar & turbulent, internal & external, forced & free convection, etc
 - Type of Boundary Layer : Velocity vs Thermal
 - Introducing the dimensionless number (Nu, Re, Pr) and it's significance
- In this chapter, we will discuss the *forced convection* in *external & internal flow*.
- The main objective is to determine :
 - heat transfer coefficient (h)
 - rate of heat transfer (q)

For both external & internal flow

Topic of This Chapter

A. Forced Convection in *External Flow*

- 1) Drag & Heat Transfer in External flow
- 2) Parallel Flow over Flat Plate
- 3) Flow across Cylinders & Spheres
- 4) Flow across Tube Banks

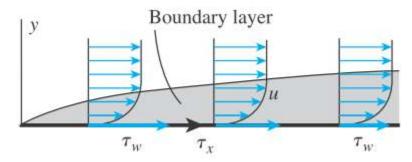

B. Forced Convection in *Internal Flow*

- 1) Laminar flow in Tubes
- 2) Turbulent flow in Tubes

Drag Force & Lift Force

Fluid flow over any surfaces creates two type of aerodynamic forces called :

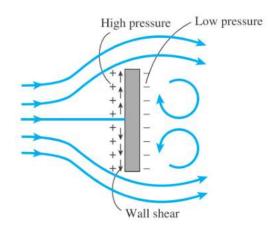
- 1) **Drag force** → the same direction of the fluid flow
- **2) Lift force** → perpendicular to the direction of fluid flow



Type of Drag Force

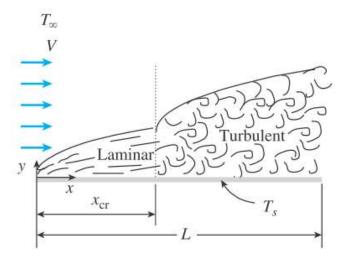
Friction Drag vs Pressure Drag

Let consider the flat plate is placed in different condition:


- parallel to the fluid flow
- normal to the fluid flow

Drag force on a flat plate parallel to the flow depends on wall shear only → Friction Drag

$$F_f = C_f A \frac{\rho V^2}{2}$$

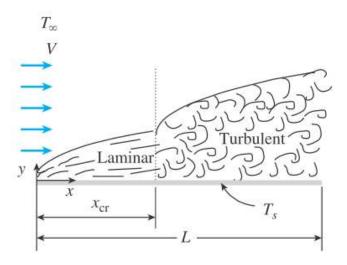

→ Friction Drag Force

Drag force on a flat plate normal to the flow depends on the pressure only and is independent of the wall shear → Pressure Drag

Local Friction Coefficients ($C_{f,x}$)

Consider the parallel flow of a fluid over a flat plate *L* in the flow direction

The Reynolds number at a distance *x* from the leading edge of a flat plate


$$Re_x = \frac{\rho Vx}{\mu} = \frac{Vx}{v}$$
 Where:
 $Re_{cr} = 5 \times 10^5$

The velocity boundary layer thickness (δ) and the local friction coefficient at location x ($C_{f,x}$)

Laminar Region	Turbulent Region		
$\delta = \frac{4.91x}{Re_x^{1/2}}$	$\delta = \frac{0.38x}{\text{Re}_x^{1/5}}$		
$C_{f,x} = \frac{0.664}{\text{Re}_x^{1/2}}$	$C_{f,x} = \frac{0.059}{\text{Re}_x^{1/5}}$		

Average Friction Coefficients (C_f)

Consider the parallel flow of a fluid over a flat plate *L* in the flow direction

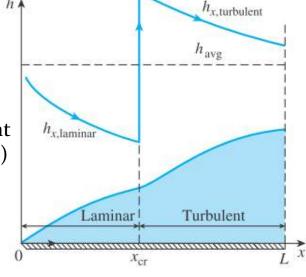
The average friction coefficients (C_f) for the entire surface can be determined by integration from :

$$C_f = \frac{1}{L} \int_0^L C_{f,x} dx$$
 ; where $C_{f,x} = \frac{0.664}{\text{Re}_x^{1/2}}$

Laminar Region	Turbulent Region		
$C_f = \frac{1.33}{\text{Re}_L^{1/2}}$	$C_f = \frac{0.074}{\text{Re}_L^{1/5}}$		

^{*} Note that, the friction coefficient for *turbulent* is taken from the experiments

Heat Transfer Coefficient (h)


Local vs Average heat transfer coefficient

The local heat transfer coefficient a location x can be found using local Nu (Nu_x):

Laminar:
$$Nu_x = \frac{h_x x}{k} = 0.332 \text{ Re}_x^{0.5} \text{ Pr}^{1/3}$$

Turbulent:
$$Nu_x = \frac{h_x x}{k} = 0.0296 \text{ Re}_x^{0.8} \text{ Pr}^{1/3}$$

*Note that: $T_s = \text{constant}$ (isothermal)

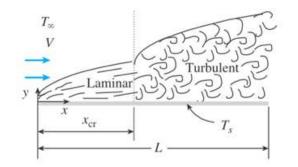
The average heat transfer coefficient (h) over the entire plate can be found by integrate the local Nu (Nu_x) :

Laminar: Nu =
$$\frac{hL}{k}$$
 = 0.664 Re_L^{0.5} Pr^{1/3}

Turbulent: Nu =
$$\frac{hL}{k}$$
 = 0.037 Re_L^{0.8} Pr^{1/3}

How To Evaluate The Fluid Properties?

Recall the heat transfer coefficient (*h*) equation


Laminar: Nu =
$$\frac{hL}{k}$$
 = 0.664 Re_L^{0.5} Pr^{1/3}

Turbulent: Nu = $\frac{hL}{k}$ = 0.037 Re_L^{0.8} Pr^{1/3}

To calculate *h*, it is necessary to know the fluid properties, such as

- Thermal conductivity, *k*
- Kinematic viscosity, v
- Prandtl Number, Pr
- Density, ρ

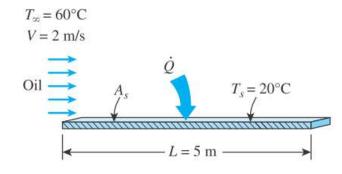
All above properties can be found from the properties table, by evaluating the fluid at the so-called *film temperature* (T_f)

$$T_f = \frac{T_s + T_\infty}{2}$$

Average temperature between surface and ambient

How To Evaluate The Fluid Properties?

Once the film temperature is calculated → refer to the table


Temp.	Density ρ , kg/m ³	Specific Heat c _p , J/kg⋅K	Thermal Conductivity k, W/m-K	Thermal Diffusivity α, m ² /s	Dynamic Viscosity μ, kg/m·s	Kinematic Viscosity ν, m ² /s	Prandti Number Pr	Volume Expansion Coeff. β, 1/K
				Methane	[CH₄]		nce	
-160	420.2	3492	0.1863	1.270×10^{-7}	1.133×10^{-4}	2.699 × 18	2.126	0.00352
-150	405.0	3580	0.1703	1.174×10^{-7}	9.169×10^{-5}	2.2547 20-1	1.927	0.00391
-140	388.8	3700	0.1550	1.077×10^{-7}	7.551×10^{-5}	1942×10^{-7}	1.803	0.00444
-130	371.1	3875	0.1402	9.749×10^{-8}	6.288×10^{-5}	1.694×10^{-7}	1.738	0.00520
-120	351.4	4146	0.1258	8.634×10^{-8}	520 × 10-5	1.496×10^{-7}	1.732	0.00637
-110	328.8	4611	0.1115	7.356×10^{-3}	4.377×10^{-5}	1.331×10^{-7}	1.810	0.00841
-100	301.0	5578	0.0967	5.761×10^{-8}	3.577×10^{-5}	1.188×10^{-7}	2.063	0.01282
-90	261.7	8902	0.0797	3628 - 10-8	2.761×10^{-5}	1.055×10^{-7}	3.082	0.02922
¥5			cpro	5.761 × 10 ⁻⁸ 3.428 × 10 ⁻⁸ Methanol (CH₃(OH)]			
20	788.4	2515 257	0.1987	1.002×10^{-7}	5.857×10^{-4}	7.429×10^{-7}	7.414	0.00118
30	779.1	0.57	0.1980	9.862×10^{-8}	5.088×10^{-4}	6.531×10^{-7}	6.622	0.00120
40	169	2644	0.1972	9.690×10^{-8}	4.460×10^{-4}	5.795×10^{-7}	5.980	0.00123
50	760.1	2718	0.1965	9.509×10^{-8}	3.942×10^{-4}	5.185×10^{-7}	5.453	0.00127
60	750.4	2798	0.1957	9.320×10^{-8}	3.510×10^{-4}	4.677×10^{-7}	5.018	0.00132
70	740.4	2885	0.1950	9.128×10^{-8}	3.146×10^{-4}	4.250×10^{-7}	4.655	0.00137

Example

Engine oil at 60°C flows over the upper surface of a 5-m-long flat plate whose temperature is 20°C with a velocity of 2 m/s. Determine the total **drag force** and the rate of heat transfer per unit area of the entire plate.

Known:

Find:

Properties of liquids

Γemp. Τ, °C	Density ρ , kg/m ³	Specific Heat c_p , J/kg·K	Thermal Conductivity k, W/m-K	Thermal Diffusivity α , m ² /s	Dynamic Viscosity μ , kg/m·s	Kinematic Viscosity ν , m ² /s	Prandtl Number Pr
				Engine Oil	(unused)		
0	899.0	1797	0.1469	9.097×10^{-8}	3.814	4.242×10^{-3}	46,636
20	888.1	1881	0.1450	8.680×10^{-8}	0.8374	9.429×10^{-4}	10,863
40	876.0	1964	0.1444	8.391×10^{-8}	0.2177	2.485×10^{-4}	2,962
60	863.9	2048	0.1404	7.934×10^{-8}	0.07399	8.565×10^{-5}	1,080
80	852.0	2132	0.1380	7.599×10^{-8}	0.03232	3.794×10^{-5}	499.3

Example

Assumptions:

- 1. The flow is steady and incompressible.
- 2. The critical Reynolds number is $Re_{cr} = 5 \times 10^5$.

Properties:

The film temperature
$$T_f = \frac{T_S + T_\infty}{2} = \frac{20 + 60}{2} = 40$$
°C, thus the properties of oil engine at T_f are (Table A-13)

$$\rho = 876 \, kg/m^3$$
 $Pr = 2962$ $k = 0.1444 \, W/m.K$ $v = 2.485 \times 10^{-4} \, m^2/s$

Analysis:

$$Re_L = \frac{VL}{v} = \frac{(2 \, m/s) \times (5 \, m)}{2.485 \times 10^{-4} \, m^2/s} = 4.024 \times 10^4 < Re_{cr} \implies$$

we have laminar flow over the entire plate.

Thus the average friction cofficient is:

$$C_f = 1.33Re_L^{-0.5} = 1.33 \times (4.024 \times 10^4)^{-0.5} = 0.00663$$

Example

Noting that the pressure drag is zero and thus $C_D = C_f$ for parallel flow over a flat plate, the drag force acting on the plate per unit width becomes

$$F_D = C_f A \frac{\rho V^2}{2} = 0.00663 \times (5 \times 1 \, m^2) \frac{(876 \, kg/m^3)(2 \, m/s)^2}{2} = 58.1 \, N$$

Similarly, the Nusselt number is determined using the laminar flow relations for a flat plate:

$$Nu = \frac{hL}{k} = 0.664Re_L^{0.5}Pr^{1/3} = 0.644 \times (4.024 \times 10^4)^{0.5} \times 2962^{1/3} = 1913$$

Then,

$$h = \frac{k}{L}Nu = \frac{0.1444 \, W/m.K}{5 \, m} (1913) = 55.25 \, W/m^2.K$$

And

$$\dot{q} = hA_S(T_\infty - T_S) = (55.25 \ W/m^2.K)(5 \times 1 \ m^2)(60 - 20)^{\circ}C = 11050 \ W$$

END OF THE SLIDES