Ch.3 Graphical Optimization

PART - 1

ME511 – Principle of Optimum Design

Lecturer:

ANDIKA AJI WIJAYA, S.T, M.Sc

College of Engineering Email: andika@ubt.edu.sa

Introduction

- The *graphical method* is applicable and recommended to solve optimization problems having <u>one or two design</u> <u>variables ONLY</u>
- Graphical optimization method *helps enhance our understanding of the underlying problem* which may not be forthcoming in the case of mathematical and computational optimization methods
- The method involves plotting contours of the objective function over a feasible region enclosed by the constraint boundaries

Procedures of Graphical Optimization Method

- The technique is quite straight forward and simple
 - Plot all constraint functions
 - Identify set of feasible solutions (feasible region)
 - 3. Draw the objective function contours* and determine the optimum design by visual inspection

* A **contour** is a curve on the graph that connects all points having <u>the same</u> <u>objective function value</u>.

Procedures of Graphical Optimization Method

Consider the following example:

"Profit Maximization Problem"

- A company manufactures two machines, A and B. Using available resources, either 28 A or 14 B can be manufactured daily.
- The sales department can sell up to 14 A machines or 24 B machines.
- The shipping facility can handle no more than 16 machines per day.
- The company makes a profit of SR400 on each A machine and SR600 on each B machine.
- How many A and B machines should the company manufacture every day to maximize its profit?

Procedures of Graphical Optimization Method

Steps	Description	Mathematical Statement	Unit
1. Objective Function	Maximize the profit	$f(x) = 400x_1 + 600x_2$	SR
2. Design Variables	Number of machines	$x_1 \& x_2$	pcs
3. Constraints	shipping and handling constraint	$g_1(x) = x_1 + x_2 \le 16$	N/A
	manufacturing constraint	$g_2(x) = \frac{x_1}{28} + \frac{x_2}{14} \le 1$	N/A
	limitation on sale department	$g_3(x) = \frac{x_1}{14} + \frac{x_2}{24} \le 1$	pcs
	Nonnegative constraint	$g_4(x) = x_1 \ge 0$ $g_5(x) = x_2 \ge 0$	pcs

Step 1 – Constraint Boundary Plot

Plot the constraint by locate both of *x*-intercept and *y*-intercept

• x-intercept when $x_2 = 0$

$$x_1 + x_2 = 16 \implies x_1 = 16$$

• y-intercept when $x_1 = 0$

$$x_1 + x_2 = 16 \implies x_2 = 16$$

Constraint boundary for the inequality $x_1 + x_2 \le 16$

Step 2 – Identify Feasible Region

- Choose arbitrary point on the left or right side of the constraint, i.e point (0,0) and (10,10)
- Point (o,o) has a value of o → satisfied (represent feasible region)
- Point (10,10) has a value of 20 → violated (represent infeasible region)

Feasible/infeasible side for the inequality $x_1 + x_2 \le 16$

Step 2 – Identify Feasible Region (con't)

 Repeat the same process for other constraints

Constraints

$$g_1(x) = x_1 + x_2 \le 16$$

$$g_2(x) = \frac{x_1}{28} + \frac{x_2}{14} \le 1$$

$$g_3(x) = \frac{x_1}{14} + \frac{x_2}{24} \le 1$$

$$\boldsymbol{g_4}(\boldsymbol{x}) = x_1 \ge 0$$

$$\boldsymbol{g_5}(\boldsymbol{x}) = x_2 \ge 0$$

Feasible region for the profit maximization problem

Step 3 – Plot the Objective Function Contours

Step 3 – Plot the Objective Function Contours

Select any point in the feasible region and evaluate the profit function there.

For example, at point (3,2), the profit function is calculated as $P = (3 \times 400) + (2 \times 600) = 2400$.

To plot the P = 2400 contour, we plot the function

$$400x_1 + 600x_2 = 2400$$

Repeat the same process for the 2^{nd} point (i.e point(6,4))and then see the trend. From the observation we found point D gives the max profit P = 8800 SR

END OF THE SLIDES