Choose the correct answer, (1 Mark each)

d) 0.35

1- A rock saturated with oil has a unit weight of 29.3 kN/m³. When dry the rock has a unit weight of 26.4 kN/m³. If the porosity of the rock is 0.47, find the density of the oil in

2- A block of rock saturated with water has edge lengths as shown in the figure. The porosity of the rock is 27.4%, find the maximum volume of the water (in m³)

squeezed out of the rock,

(a) 0.16
(b) 0.17
(c) 0.18
(d) 0.19

- 3- Calculate the load needed (in kN) to provide a stress of 726 kPa on a surface area of 2.82 cm².
 - a) 0 b) 2.05 c) 20.47 d) 0.20

- 4- If subsurface rocks have density of 3.08 g/cm³, find the lithostatic stress (in kPa) at a depth of 6.75 km is,
 - a) 143.37
 - b) 173.56
 - (c) 203.74
 - d) 223.61

- P=3080 T=7. N=6.75
 - J = P9h

A Cone shape container was filled with a mixture of 35% sandstone powder and 65% concrete. The initial porosity of the mixture inside the container was found to be 0.30. Find

5- Unit weight of the mixture (kN/m³)

 $0.4 \, \text{m}$

- a) 26.31 b) 20.26
 - c) 30.04
 - d) 35.61

- Pa = (1 P1 + +2 P2 Pa = 0.35 P6 + 0.65 P2 Pa = P(0.35 +0.65)
 - nmxiture = 6.3
- 6- The density of the mixture inside the container (kg/m³)
 - a) 14179

b) 18419

(c) 20511

d) 23121

P = 60x

Pg = 0.35P, + 0.65P2

p-0.45565 =0-5426

P-0-455 P2 +0-455 P2 = P

Pg = 29301

- 7- If the mixture is compressed to maximum, how much will be the subsidence in (m) inside the cone container.
 - a) 0.35
 - b) 0.45
 - c) 0.55
 - d) 0.25
- 8- A Block made of Marble stone has a shear modulus of 27 GPa and bulk modulus of 71.9 GPa, and dimensions of 0.8 m, 1.3 m and 1.5. If the Block is resting on a horizontal surface and was subjected to a force F=30 MW. Find, the linear deflection Δx in mm. (3 marks)

9- Clay sediment of porosity 48.2% is deposited into a square trench to a depth equal to 7.26 m. Find the porosity of the clay when it has settled by 54.5 cm. (2 marks)

$$DH = H_0 \left[\frac{n_0 - n}{1 - n} \right]$$

$$0.545 = 7.26 \left[\frac{0.482 - n}{1 - n} \right]$$

Part I: Earthquake

- 1- The region of initiation of seismic energy within the Earth is called the:
 - a) area of greatest building damage
 - b) area of least building damage
 - c) epicentre
 - (d) focus
- 2- S-waves produce a series of:
 - a) Up and down motion perpendicular to Earth's surface
 - b) Contractions and expansions that are in the direction of wave propagation.
 - Shearing motions that are at right angles to the direction of wave propagation.
 - d) Snake-like motions parallel to the Earth's surface.
- 3- At a seismic station, the first waves to arrive are
 - a) Shear waves
 - (b) Pressure waves
 - c) Surface waves
 - d) All arrive at the same time

University of Bahrain

First Semester 2018/2019

4- The time (in minutes), the SS-wave needs to travel 2000 km from the epicentre.

5- If the P wave arrived at 2:30 p.m. a city 4500 km from the epicentre, at what time the S wave will arrive.

6- What is the megaton TNT equivalent of 8.5 on Richter scale earthquake?

- a) 0.03
- b) 1.06

d) 45.2

7- If a station received earthquake waves as shown in the figure below. Using the figure and the travel time curve, find the distance (approximately) between the epicentre and the station (in km).

- a) 500
 - (b)**)** 1500
 - c) 2500
 - d) 3000

- tp=4:03 +5=4:05 D+= 2 min we should be provided
 - with of

University of Bahrain

First Semester 2018/2019

Part II: Radioactivity

8- What will be the initial decay rate (in decays/s) for 10 kg tritium isotope $\frac{3}{2}$ He? (2

marks)
$$R = \frac{V \ln 2}{R}$$

$$R = \frac{10 \text{ kg}}{R}$$

$$N = \frac{10 \text{ kg}}{3 \times 1.66 \times 10^{-27}}$$

$$N = \frac{2.52 \times 365 \times 24 \times 60 \times 60}{R}$$

$$R = \frac{2.52 \times 365 \times 24 \times 60 \times 60}{R}$$

$$R = \frac{2.52 \times 365 \times 24 \times 60 \times 60}{R}$$

$$R = \frac{2.52 \times 365 \times 24 \times 60 \times 60}{R}$$

$$R = \frac{2.52 \times 365 \times 24 \times 60 \times 60}{R}$$

$$R = \frac{2.52 \times 365 \times 24 \times 60 \times 60}{R}$$

$$R = \frac{2.52 \times 365 \times 24 \times 60 \times 60}{R}$$

$$R = \frac{2.52 \times 365 \times 24 \times 60 \times 60}{R}$$

$$R = \frac{2.52 \times 365 \times 24 \times 60 \times 60}{R}$$

$$R = \frac{2.52 \times 365 \times 24 \times 60 \times 60}{R}$$

9- How old is a rock that contains 3.86 mg of ^{235}U and 5.34 mg of ^{207}Pb ? Given the half life time of Uranium 4.47 Gyrs? (2 marks)

$$t = \left(\frac{T_{1n2}}{I_{1n2}}\right) \ln\left(1 + \frac{m_D}{mp} \frac{Ap}{Ap}\right)$$

$$t = \frac{4.47}{I_{1n2}} \ln\left(1 + \frac{5.34 \times 10^{-6}}{5.34 \times 10^{-6}} + \frac{235}{207}\right)$$

$$t = 6.088 \text{ Gy}$$

10-The radioactive isotope of polonium $^{210}_{84}Po$ decays with a half-life of 138.4 days. What mass of this isotope has an activity of 9.00 mCi? (1 mark) $1 < 3.7 \times 10^{30}$

$$R = \frac{m \ln 2}{Au T}$$

$$\frac{333 \times 10^{6}}{1.6618 \times 10^{17}} = \frac{m \ln 2}{1.6618 \times 10^{17}}$$

$$\frac{333 \times 10^{6}}{1.6618 \times 10^{17}} = \frac{m \ln 6618 \times 10^{17}}{1.6618 \times 10^{17}}$$

m = 2.004 Mg