The previous chapters explored methods to determine the displacement of a mechanism whose link lengths are given.

For example in the following example we have the dimensions of the wheel assembly for a small aircraft. We need to classify the displacement of this four-bar mechanism.

(Machines & Mechanisms, David H. Myszka, Fourth Edition)

The lengths of the links are:
$S = 12 \text{ in.}, \ L = 32.4 \text{ in.}, \ P = 30 \text{ in.}, \ Q = 26 \text{ in.}$

Check the case I: $S + L < P + Q$

$12 + 32.4 < 30 + 26 \Rightarrow 44.4 < 56 \ (\text{YES})$

The shortest link AB is adjacent to the ground (frame). **This is the class I.2** (GCRR)

Class I.2

Ground either link adjacent to the shortest and you get a crank-rocker: the shortest link will fully rotate and the other link pivoted to ground will oscillate.

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Compared to the previous chapters the **graphical linkage synthesis** presents the **opposite task**: That is, **GIVEN A DESIRED MOTION, A MECHANISM FORM AND DIMENSIONS MUST BE DETERMINED.**

- For example in the following example two desired positions of a body are given. We need to choose a mechanism with appropriate link lengths for obtaining these positions. The four-bar mechanism can be used.

![Figure 1: Constructing a four-bar linkage for two desired positions.](image)

- Use the simplest mechanism capable of achieving the desired motion.
- The four-bar and slider crank mechanisms are the most widely used.

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Importance of the synthesis is design a mechanism that produces a desired output motion for a given input motion.

Type synthesis:
Proper type of mechanism best suited to a given problem.

For example linkages, gears, cam and follower, belt and pulley etc. each of these solutions, while possible may not be optimal or practical.

Number synthesis:
How many links should the mechanism have? How many degrees of freedom are desired?

Dimensional synthesis
Dimensional synthesis of a linkage is determination of the lengths of the links necessary to accomplish the desired motions.

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Tasks of mechanisms can be classified in three groups
(1) Function generation, (2) Path generation, (3) Motion generation

Function generation

- A function generator is conceptually a “black box” which delivers some predictable output in response to a known input.

- Historically, before the advent of electronic computers, mechanical function generators found wide applications.

Figure 2: Log function generator

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Path generation

- Control of a point in a plane to follow a certain path.
- Typically a point on the coupler traces the desired path

![Path generator](image)

Figure 3: Path generator

Motion generation

- Control of a line in the plane such that it follows some prescribed set of sequential positions.
- A simple case: coupler output

![Motion generator](image)

Figure 4: Motion generator

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
EXAMPLE 1

Design a **four-bar Grashof crank-rocker mechanism** to give 45° of rocker rotation with equal time forward and back, from a constant speed motor input (see the Figure 5).

Key pieces of statement

- **Rocker output** – two positions with angular displacement 45° (Function generation)
- **Four-bar linkage**, three in motion, one grounded
- **Grashof** – at least one link can rotate fully
- **Crank-rocker**: $(S + L < P + Q)$ and link adjacent to shortest link is ground

Note that: the sentence “with equal time forward and back” will be discussed later in the quick return mechanisms section.

Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Step 1
Draw the rocker O_4B in both extreme positions B_1 and B_2 in any convenient location with angle 45^0.

Step 2
Select a convenient point O_2 on line B_1B_2 extended.

Step 3
- Bisect line B_1B_2 and draw a circle with that radius about O_2.
- Label the two intersection of circle with B_1B_2 extended, A_1 and A_2.
- Measure O_2A_1 (Link 2: crank) and A_1B_1 (Link 3: coupler).

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Step 4

- Measure the ground length (Link 1), crank length (Link 2) and rocker length (Link 4).
- Check the Grashof condition \(S + L \leq P + Q\). If non-Grashof then redo steps 2 to 4 with \(O_2\) further from \(O_4\).

Figure 7: Limiting positions
Example 2

Rocker output - Design a Grashof four-bar linkage to move link CD from position C_1D_1 to C_2D_2 (see the Figure 8).

Key pieces of statement

- **Rocker output** – two positions with complex displacement (motion generation)
- **Four-bar linkage**, three in motion, one grounded
- Only the locations of the lines C_1D_1 and C_2D_2 are given.
- **Grashof** – at least one link can rotate fully ($S + L < P + Q$)

![Figure 8: finished linkage](image)

Figure 8: finished linkage

![Figure 9: kinematic diagram of the linkage](image)

Figure 9: kinematic diagram of the linkage

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Step 1

Draw the link CD in its two desired positions C_1D_1 and C_2D_2, in the plane as shown.

Step 2

Draw construction lines from point C_1 to C_2, and from point D_1 to $D_2.

Step 3

Bisect line C_1C_2 and line D_1D_2 and extend their perpendicular bisectors to intersect at O_4. Their intersection is the rotopole.

Step 4

Since this example is the rocker output, draw the lines from O_4 to the lines C_1D_1 and $C_2D_2.

Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Step 5
Select a convenient radius and draw an arc about the rotopole to intersect both lines O_4C_1 and O_4C_2. Label the intersection B_1 and B_2.

Step 6 Do steps 2 to 4 of example 1 to complete the linkage.

![Diagram](image1)

Figure 10: Final four-bar Grashof crank-rocker mechanism with complex motion

![Diagram](image2)

Figure 11: Limiting positions

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Example 3

Coupler output - Design a Grashof four bar linkage to move the link CD from position C_1D_1 to C_2D_2 (with moving pivots at C and D) (see the Figure 12).

Key pieces of statement

- **Coupler output** – two positions with complex displacement (motion generation)
- **Four-bar linkage, three in motion, one grounded**
- **Only the locations of the lines C_1D_1 and C_2D_2 are given.**
- **Grashof** – at least one link can rotate fully ($S + L < P + Q$)

Figure 12: (a) finished linkage, (b) kinematic diagram of the linkage

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Step 1

Draw the link CD in its two desired positions C_1D_1 and C_2D_2, in the plane as shown.

Step 2

Draw construction lines from point C_1 to C_2, and from point D_1 to D_2

Step 3

Bisect line C_1C_2 and line D_1D_2 and extend their perpendicular bisectors in convenient directions. The rotopole will not be used in this question.

Step 4

Select any convenient point on each bisector as the fixed pivots O_2 and O_4 respectively. Connect O_2 with C_1 and call it Link 2. Connect O_4 with D_1 and call it Link 4.

Step 5

Line C_1D_1 is Link 3. Line O_2O_4 is Link 1.

Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Step 6
Check the Grashof condition \((S + L \leq P + Q)\), if unsatisfied, and then repeat steps 4 and 5. Note that any Grashof condition is potentially acceptable in this case.

Step 7 Construct the model for the positions \(C_1D_1\) and \(C_2D_2\).
THREE MOTION SYNTHESIS

Example 4

Coupler output – design a Grashof four bar linkage to move the link CD shown from position \(C_1D_1 \) to \(C_2D_2 \) and then to position \(C_3D_3 \). Moving pivots are at \(C \) and \(D \). Find the fixed pivot locations (see the Figure 13).

Key pieces of statement

- Coupler output – three positions with complex displacement (motion generation)
- Four-bar linkage, three in motion, one grounded
- Only the locations of the lines \(C_1D_1, C_2D_2 \) and \(C_3D_3 \) are given.
- Need to find fixed pivot locations \(O_2 \) and \(O_4 \).

Figure 13: finished linkage

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Step 1
*Draw link CD in three positions
C_1D_1, C_2D_2 and C_3D_3.

Step 2
*Draw construction lines from point C_1 to C_2, and from C_2 to C_3.

Step 3
*Bisect line C_1C_2 and line C_2C_3 and extend their perpendicular bisector until they intersect. Label their intersection O_2.

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Step 4

Repeat steps 2 and 3 for lines D_1D_2 and D_2D_3. Label the intersection O_4.

Step 5 Connect O_2 with C_1 and call Link 2. Connect O_4 with D_1 and call Link 4.

Step 6 Check the Grashof condition $(S + L \leq P + Q)$. Note that any Grashof condition is potentially acceptable in this case.

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Example 5

Design a **dyad** to control and limit the extremes of motion of the linkage in example 3 to its two design positions (see the Figure 14).

Key pieces of statement

- Adding a **Dyad (two bar chain)** to control motion in example 3.

Step 1

Select a convenient point on Link 2 of the linkage designed in example 3. *Note that it need not be on the line \(O_2C_1 \).* Label this point \(B_1 \).

Step 2

Draw an arc about center \(O_2 \) through \(B_1 \) to intersect the corresponding line \(O_2B_2 \) in the second position of Link 2. Label this point \(B_2 \). The chord \(B_1B_2 \) provides us with the same problem as given by Example 1 (see page 6).

Step 3

Do steps 2 and 3 of Example 1 to complete the linkage. Name the new links as Link 5 and Link 6 and the center is \(O_6 \). Link 6 will be the driver crank. The four-bar sub chain of links \(O_6, A_1, B_1, O_2 \) must be a Grashof crank-rocker.

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring
Figure 14: Driver dyad with motor at O_6

Figure 15: Alternative location of the driver dyad with motor at O_6

* Prepared by Dr. Eyyup Aras, KSU, 2015 Spring