DYNAMIC FORCE ANALYSIS

In this chapter, some parts and examples are used from (Machines & Mechanisms, Applied Kinematic
Analysis, D.H. Myszka, Fourth Edition).

INERTIAL FORCE

Section 13.4 listed Newton’s three principal laws of mechan-
ics. The second law is critical for all parts that experience
acceleration. It is stated as

SECOND LAW: A body that has an unbalanced force has

a. An acceleration that is proportional to the force,

b. An acceleration that is in the direction of the
force, and

¢. An acceleration that is inversely proportional to
the mass of the object.

For linear motion, this law can be stated in terms of the
acceleration of the link’s center of gravity, A, thus,

IF=mA, (14.7)
Equation (14.7) can be rewritten as

>F — mA, = 0 (14.8)

The second term in equation (14.8) is referred to as the
inertia of a body. This term is defined as an inertial force, F;

F; = — mA, (14.9)

The negative sign indicates that the inertial force opposes
acceleration (it acts in the opposite direction of the accelera-
tion). Inertia is a passive property and does not enable a
body to do anything except oppose acceleration.

This notion is commonly observed. Imagine pound-
ing on the gas pedal in an automobile, violently accelerat-
ing the vehicle. Envision the tendency for your head to
lurch backward during the acceleration. This is the inertial
force, acting in an opposite direction to the acceleration
of the automobile. Further, the extent of the lurch is




proportional to the magnitude of acceleration. Similarly,
as the brakes in an automobile are slammed, decelerating
the vehicle, your head lurches forward, again opposing the
acceleration of the automobile. This is Newton's second
law in practice.

Equation (14.8) can be rewritten as

EF 4+ PL=0 (14.10)

This concept of rewriting equation (14.7) in the form of
equation (14.8) is known as d’Alembert’s principle. Using
d’Alembert’s principle in force analysis is referred to as the
inertia—force methed of dynamic equilibrium. It allows for
analysis of accelerating links, using the same methods that
are used in a static analysis.

NOTE THAT: for the given DYNAMICS question:

If the link has a MASS, thenuse vg + Fi

g =0

If the link does not have a mass (negligible) then use XF =0

SEE THE FOLLOWING EXAMPLE




EXAMPLE PROBLEM 14.5

The compressor mechanism shown in Figure 14.7 is driven clockwise by a DC electric motor at a
constant rate of 600 rpm. In the position shown, the cylinder pressure is 45 psi. The piston weighs 0.5 lb, and
the coefficient of friction between the piston and the compressor cylinder is 0.1. The weight of all other
links is negligible. At the instant shown, determine the torque required from the motor to operate the
COMPpressor.

FIGURE 14.7 Mechanism for Example Problem 14.5.

SOLUTION:

I.  Draw a Kinematic Diagram

This is a common in-line, slider-crank mechanism, having a single degree of freedom. A scaled kinematic
diagram is shown in Figure 14.8a.

FIGURE 14.8 Diagrams for Example Problem 14.5.




Decide on a Method to Achieve the Required Motor Torque

Because the piston is the only component without negligible weight, the inertial force, and the
acceleration, of this component must be determined. The acceleration of the piston (link 4) is strictly
translational and is identical to the motion of point C.

Once the acceleration of the piston has been obtained, the subsequent inertial forces can be
calculated. Finally, free-body diagrams and the corresponding equations can be used to determine the required
torque.

Determine the Velocity of Points B and C
The 2-in. crank is rotating at

600 rpm. The velocity of point Bis
m o
wy = = (600 rev/imin) = 62.8 rad/s,cw

Vp = warap = (62.8 rad/s)(2in.) = 125.6in./s  /40°

The direction of Vp is perpendicular to link 2 and consistent with the direction of &», up and to the left.
The relative
velocity equation for points B and C can be written as

Vc = VE + VG‘B

A completed velocity diagram is shown in Figure 14.8b. Scaling the vector magnitudes from the diagram,
Vo= 80.5in./s —

VC]'B = §2.2 in./s ?gﬂ;
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Calculate Acceleration Components

The next step is to construct an acceleration diagram, which includes points B and C. Calculating the magni-
tudes of the known accelerations,

2 i 2
Al = (V) = (125.6in./s) = 7888in./s? “50° (directed toward the

B TAR 2.0in. center of rotation, point A)

aﬁ = 0 (no angular acceleration of the 2-in. crank)

(Vap)?  (82.2in.s)?
Agm - ) — : — 844 in./& E directed from C toward B,
e 8.01n.

Construct an Acceleration Diagram

The relative acceleration equation for points B and C can be written as

The completed acceleration diagram is shown in Figure 14.8¢.
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6.  Measure the Piston Acceleration

Scaling the vector magnitudes from the diagram,
Al = 5985inss® /79°
Al = 5378in/s? —

Because the tangential acceleration of point ¢ is in the same direction as the velocity, the piston is accelerating
(speeding up), not decelerating.

7. Calculate the Inertial Force

Because the piston is the only link of considerable weight, its inertial force is computed by combining equations
(14.9) and (14.1).

i Wy
g = = MmgAg = ?(—- Agy)
(0.5 Ib) o
= —— 5 (5378in./s") = 6.96 b«
386 in./s

NOTE THAT the acceleration of gravity is as follows

The magnitude of weight and mass can be related
through Newton’s gravitational law.

W = mg

In most analyses on earth, the acceleration of gravity is
assumed to be

g = 32.2ft/s* = 386.4in./s* = 9.81m/s* = 9810 mm/s”




Sketch Free-Body Diagrams of the Mechanism Links

Notice that link 3 (BC) is a simple link, containing only two pin joints. In addition, no other force is acting on this
link. Thus, it is a two-force member, and the forces acting on the link must be equal and along the line that con-
nects the two pins. The free-body diagram for link 3 is shown as Figure 14.8d. As before, the notation used is that
F3; is a force that is applied to link 3 as a result of contact from link 2.

Link 2 is also a simple link; it contains only two pin joints. However, a moment (torque) is also applied to this
crank. Thus, this link is not a simple, two-force member. Newton’s third law stipulates that a force that is acting at B
will be equal and opposite to F;;. Thus, the direction of F,5 is known as a result of Figure 14.8d. The angle between
links 2 and 3 was measured from the CAD model. A general pin joint at point A dictates that two reaction forces will
be present. The free-body diagram for link 2 is shown as Figure 14.8e.

Link 4 has sliding contact with link 1. This contact force will act perpendicular to the contact surface. The
force from the compressed gas will, similarly, act perpendicular to the piston surface. A friction force will oppose
the motion (velocity) of link 4. Also, Newton’s third law stipulates that a force that is acting at Cwill be equal and
opposite to Fi4. Thus, the direction of F43 is known as a result of Figure 14.8d. The free-body diagram for link 4
is shown as Figure 14.8f.

W=051b

NoOTE THAT for the link 4, the direction of the
inertial force is opposite to the direction of the
acceleration

Y OU can calculate the angles 39 and 1 1’ using he cosine and sine laws




9.

Solve the Dynamic Equilibrium Equations for Link 4

Link 4 is examined first because it contains the applied force. The gas force is calculated as

’]'Tl:‘il:\i.s'u.m:];:i i{l.5 iIl.}2 }

Foas = Pgas Apiston = Pgﬂs{ 1 ] = 45 Ibﬁn.2|: = 7905lbe

The friction force is
Ff — ‘!.LF_“ = 0.1 F,“

The two unknown forces on this link (Figure 14.8f) are solved by using the following equilibrium
equations:

5 XF*+  Fi=o

Fy3c0811.0° — Fgas — Fiy — Fr=10
+1 EF¥=0:

= F43C0511.0° + F.” —05lb=20

Solving these equations yields

Fy; = +89.81b = 89.81b \&T

+16.61b = 16.61bT

Fyy

NOTE THAT since the Link 4 has only translational
motion we don’t use the moment equation.

10.  Solve for Equilibrium of Link 3

Because link 3 is a two-force member (Figure 14.8d.), the equilibrium equations dictate that the forces have the
same magnitude, act along the same line, and are opposite in sense. Of course, Newton’s third law dictates that
F3; = Fy3. Thus, the forces acting on link 3 are

Fyy = 89.81b 11°\

F3g = 89.81b 11°

NoOTE THAT for the link 3, since there is no mass
(negligible) the inertial force is zero.




Solve for Equilibrium of Link 2

The free-body diagram of link 2 (Figure 14.8¢) will reveal the required motor torque. Of course, Newton’s third
law dictates that F3; = F;;. The unknown forces and moment on this link are solved using the following
equilibrium equations:

+

5 I =0

F3; — Fy3c0811° =0
+7 I =

F3, + Fysin11® = 0
£) IMp=0

—T31 + (Fz35in39%)(2in.) = 0

NoTE THAT for the link 2, since there is no mass
(negligible) the inertial force is zerouse > -

ALsO since this is the dynamic case the above
moment equation is > M,=1«. But for the constant
rotational speed of the link 2, « =0.

Solving the three equations yields

F§; = +88.11b = 88.11b —
F;; = —17.11b = 17.11b
T; = +113.01bin. = 113.0lb in.,cw

Because the torque is the desired value, solving only the moment equation was necessary.



