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CHE406: Numerical Methods In 
Chemical Engineering 

(Week 8-10 Lecture)

Numerical solutions  for Systems 
of non-linear equations

“The fsolve moethod”

http://www.ksu.edu.sa/


Newton’s Method for Simultaneous 
Nonlinear Equations 

Suppose we need to solve f1(x1, x2)=0,   f2(x1, x2)=0
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Newton’s Method for Simultaneous 
Nonlinear Equations 
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Newton’s Method for Simultaneous Nonlinear 
Equations 
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Hand calculation is possible, but when the size of the system increases 
this becomes unpractical (a programming software is thus needed



Newton’s Method for Simultaneous 
Nonlinear Equations 

f1(x1, … xk)=0
……..
fk(x1, …. xk)=0

 J . δ = -f



Newton’s Method for Simultaneous 
Nonlinear Equations 

•Where J is the Jacobian matrix, δ is the correction vector, 

and f is the vector functions.

• After solving for δ one can obtain the new estimate by : 

)()()1( nnn xx +=+

Note : strongly nonlinear equations likely to diverge, therefore 
relaxation is generally used to stabilize the iterative process 
( varies between 0 and 1
typically  ~ 0.5):

( ) ( ) +=+ nn xx 1



Illustrative example

F2,Cb2F1,Cb1

Height, L

F0,Cb

V

It is desired to estimate the steady state values of the height 

(L) of the solution in CSTR and the final concentration (Cb)

→ Use the overall conservation of mass and component 

balances to obtain a system of two equations as a function 

of L and Cb

→ Write the steady state system of equations and solve



◼ Since you have not studied reaction 
engineering yet, the pertaining 
equations will be given here without 
going in depth in deriving them.
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Illustrative example



Illustrative example
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The system of equations is as follow

At steady state, the system is reduced to:



Implementing Newton’s Method for Simultaneous 
Nonlinear Equations using computer tools

For quick and simple way to solve theses types of equations, one 
could use : Excel or Matlab.



Using Matlab

• Solving this example using Matlab maybe obtained with the help of 

symbolic derivation of the Jacobian matrix, followed by its evaluation 

and resolution of the system J . δ = -f
• The following Matlab M-file contains all the commands leading to a 

formatted solution in the form of summarized table of iterations 

•Note that the text in green color and preceded by % contain 

comments and explanation 

•Black text contain the Matlab executable commands or program 

statements



Implementing the “fsolve” command

Consider a system of non-linear equations to be solved using 

MATLAB

 The Matlab “fsolve” function maybe simply used by 

converting the system of equation into a function-script,

then execute the “fsolve” command externally. 

 The syntax is 

solution = fsolve (@TheSystem,TheSatrtingGuess,options)



function F=TheSystem(x);
% This script will contain the components of the system of 
% non-linear equations to be solved 
%
F(1)=……………”write here equ. 1 f(1)”………………..…;
F(2)=……………”write here equ. 1 f(2)”….............…..;
:
F(k)=…………….”write here equ. 1 f(k)”………….……...;

Writing the system and calling the fsolve

% The main program
:
:
% use the fsolve to get the solution
solution=fsolve(@TheSystem,xo)



Illustrative example

F2,Cb2F1,Cb1

Height, L

F0,Cb

V

It is desired to estimate the steady state values of the height 

(L) of the solution in CSTR and the final concentration (Cb)

→ Use the overall conservation of mass and component 

balances to obtain a system of two equations as a function 

of L and Cb

→ Write the steady state system of equations and solve



Using fsolve with numerical evaluation of 
Jacobian

%  The Main program

clear all

% Step 1. Define given data 

global alpha cb1 cb2 k1 k2 u1 u2 F1 F2

cb1=24.9;cb2=0.1; % Feed Concentration of components B1 and B2

k1=1;k2=1;          % Reaction rate constants k1 and k2

A=1;                % CSTR cross-sectional area

alpha = 0.2         % valve coeffecient

F1=1;F2=1;          % Feed volumetric flow rate of B1 and B2

u1=F1/A;u2=F2/A;

% Step 2. initial estimates and parameters initializations

x0=[85;1.6];

% Step 3. use “fsolve” to compute the solution
solution=fsolve(@CSTRSystem,x0)

options = optimoptions('fsolve','Display','iter');

%options = optimoptions('fsolve','Display','iter');

[x,fval,exitflag,output] = fsolve(@CSTRSystem,x0,options);

x,fval,exitflag



Using fsolve with numerical evaluation of 
Jacobian

function F=CSTRSystem(x)

global alpha cb1 cb2 k1 k2 u1 u2 F1 F2

F(1)=F1+F2-alpha *sqrt(x(1));

F(2)=u1/x(1)*(cb1-x(2))+u2/x(1)*(cb2-x(2))-k1*x(2)/(1+k2*x(2))^2;



Using fsolve with analytical evaluation of Jacobian

%  The Main program with analatyical jacobian

clear all

% Step 1. Define given data 

global alpha cb1 cb2 k1 k2 u1 u2 F1 F2

cb1=24.9;cb2=0.1; % Feed Concentration of components B1 and B2

k1=1;k2=1;          % Reaction rate constants k1 and k2

A=1;                % CSTR cross-sectional area

alpha = 0.2 ;

F1=1;F2=1;          % Feed volumetric flow rate of B1 and B2

u1=F1/A;u2=F2/A;

% Step 2. initial estimates and parameters initializations

x0=[85;1.6];

% Step 3. use “fsolve” to compute the solution
options = optimoptions('fsolve','Display','iter','Jacobian','on');

%solution=fsolve(@JCSTRSystem,x0)

[x,fval,exitflag,output] = fsolve(@JCSTRSystem,x0,options);

x,fval,exitflag



Using fsolve with analytical evaluation of Jacobian

function [F,Jac] =JCSTRSystem(x)

global alpha cb1 cb2 k1 k2 u1 u2 F1 F2

F(1)=F1+F2-alpha *sqrt(x(1));

F(2)=u1/x(1)*(cb1-x(2))+u2/x(1)*(cb2-x(2)) -

k1*x(2)/(1+k2*x(2))^2;

% Evaluate the Jacobian matrix

Jac = zeros(2,2);

Jac(1,1) = -0.5 * alpha / sqrt(x(1));

Jac(2,1) = - 1/x(1)^2 *(u1* (cb1-x(2)) + u2* (cb2-x(2)));

Jac(2,2) = -u1/x(1) - u2/x(1)-(k1/(1+k2*x(2))^2 -

2*k1*k2*x(2)/(1+k2*x(2))^3);

return;



Using Matlab

The Matlab output is 
solution =

100
2.7925


