KING SAUD UNIVERSITY

CHE406: Numerical Methods In Chemical Engineering (Week 8-10 Lecture)

Numerical solutions for Systems of non-linear equations
"The fsolve moethod"

Newton's Method for Simultaneous Nonlinear Equations

Suppose we need to solve $\mathrm{f}_{1}\left(\mathrm{X}_{1}, \mathrm{x}_{2}\right)=0, \mathrm{f}_{2}\left(\mathrm{X}_{1}, \mathrm{x}_{2}\right)=0$

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left.\frac{\partial f_{1}}{\partial x_{1}}\right|_{x^{(1)}}\left(x_{1}-x_{1}^{(1)}\right)+\left.\frac{\partial f_{1}}{\partial x_{2}}\right|_{x^{(1)}}\left(x_{2}-x_{2}^{(1)}\right)+\ldots \\
& f_{2}\left(x_{1}, x_{2}\right)=f_{2}\left(x_{1}^{(1)}, x_{2}^{(1)}\right)+\left.\frac{\partial f_{2}}{\partial x_{1}}\right|_{x^{(1)}}\left(x_{1}-x_{1}^{(1)}\right)+\left.\frac{\partial f_{2}}{\partial x_{2}}\right|_{x^{(1)}}\left(x_{2}-x_{2}^{(1)}\right)+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{\partial f_{1}}{\partial x_{1}}\right|_{x^{(1)}}\left(x_{1}-x_{1}^{(1)}\right)+\left.\frac{\partial f_{1}}{\partial x_{2}}\right|_{x^{(1)}}\left(x_{2}-x_{2}^{(1)}\right)=-f_{1}\left(x_{1}^{(1)}, x_{2}^{(1)}\right) \\
& \left.\frac{\partial f_{2}}{\partial x_{1}}\right|_{x^{(1)}}\left(x_{1}-x_{1}^{(1)}\right)+\left.\frac{\partial f_{2}}{\partial x_{2}}\right|_{x^{(1)}}\left(x_{2}-x_{2}^{(1)}\right)=-f_{2}\left(x_{1}^{(1)}, x_{2}^{(1)}\right)
\end{aligned}
$$

Newton's Method for Simultaneous Nonlinear Equations

$$
\delta_{1}^{(1)}=x_{1}-x_{1}^{(1)} \quad \delta_{2}^{(1)}=x_{2}-x_{2}^{(1)}
$$

$$
\begin{aligned}
& \left.\frac{\partial f_{1}}{\partial x_{1}}\right|_{x^{(1)}} \delta_{1}^{(1)}+\left.\frac{\partial f_{1}}{\partial x_{2}}\right|_{x^{(1)}} \delta_{2}^{(1)}=-f_{1}\left(x_{1}^{(1)}, x_{2}^{(1)}\right) \\
& \left.\frac{\partial f_{2}}{\partial x_{1}}\right|_{x^{(1)}} \delta_{1}^{(1)}+\left.\frac{\partial f_{2}}{\partial x_{2}}\right|_{x^{(1)}} \delta_{2}^{(1)}=-f_{2}\left(x_{1}^{(1)}, x_{2}^{(1)}\right)
\end{aligned}
$$

$$
\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \left.\right|_{x^{(1)}} \\
\frac{\partial f_{2}}{\partial x_{2}} & \left.\right|_{x^{(1)}}
\end{array}\right]\left[\begin{array}{l}
\delta_{1}^{(1)} \\
\delta_{2}^{(1)}
\end{array}\right]=-\left[\begin{array}{l}
f_{1}^{(1)} \\
f_{2}^{(1)}
\end{array}\right]
$$

Newton's Method for Simultaneous Nonlinear Equations

Hand calculation is possible, but when the size of the system increases this becomes unpractical (a programming software is thus needed

$$
\begin{aligned}
& \delta_{1}^{(1)}= \frac{\left[f_{1} \frac{\partial f_{2}}{\partial x_{2}}-f_{2} \frac{\partial f_{1}}{\partial x_{2}}\right]}{\left[\frac{\partial f_{1}}{\partial x_{1}} \frac{\partial f_{2}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{1}} \frac{\partial f_{1}}{\partial x_{2}}\right]} \\
& \delta_{2}^{(1)}= \frac{\left[f_{2} \frac{\partial f_{1}}{\partial x_{1}}-f_{1} \frac{\partial f_{2}}{\partial x_{1}}\right]}{\left[\frac{\partial f_{1}}{\partial x_{1}} \frac{\partial f_{2}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{1}} \frac{\partial f_{1}}{\partial x_{2}}\right]} \\
& \Longrightarrow x_{i}^{(n+1)}=x_{i}^{(n)}+\delta_{i}^{(n)}
\end{aligned}
$$

Newton's Method for Simultaneous Nonlinear Equations

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{k}}\right)=0 \\
& \ldots \ldots . . \\
& \mathrm{f}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots . \mathrm{x}_{\mathrm{k}}\right)=0 \quad\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \ldots & \frac{\partial f_{1}}{\partial x_{k}} \\
& \ldots . \omega^{2} \\
\frac{\partial f_{k}}{\partial x_{1}} & \ldots & \frac{\partial f_{k}}{\partial x_{k}}
\end{array}\right]\left[\begin{array}{c}
\delta_{1} \\
\cdot \\
\cdot \\
\cdot \\
\delta_{k}
\end{array}\right]=-\left[\begin{array}{c}
f_{1} \\
\cdot \\
\cdot \\
\cdot \\
f_{k}
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow \text { J. } \boldsymbol{\delta}=-\mathbf{f}
$$

Newton's Method for Simultaneous Nonlinear Equations

-Where \mathbf{J} is the Jacobian matrix, $\boldsymbol{\delta}$ is the correction vector, and \mathbf{f} is the vector functions.

- After solving for $\boldsymbol{\delta}$ one can obtain the new estimate by :

$$
x^{(n+1)}=x^{(n)}+\delta^{(n)}
$$

Note : strongly nonlinear equations likely to diverge, therefore relaxation is generally used to stabilize the iterative process (ρ varies between 0 and 1 typically $\rho \sim 0.5$):

$$
x^{(n+1)}=x^{(n)}+\rho \delta
$$

Illustrative example

It is desired to estimate the steady state values of the height
(L) of the solution in CSTR and the final concentration (Cb)
\rightarrow Use the overall conservation of mass and component balances to obtain a system of two equations as a function of L and $C b$
\rightarrow Write the steady state system of equations and solve

Illustrative example

- Since you have not studied reaction engineering yet, the pertaining equations will be given here without going in depth in deriving them.

Illustrative example

The system of equations is as follow

$$
\begin{aligned}
& A \frac{d L}{d t}=F_{1}+F_{2}-\alpha \sqrt{L} \\
& \frac{d\left(C_{B}\right)}{d t}=\frac{F_{1}}{A L}\left(C_{B 1}-C_{B}\right)+\frac{F_{2}}{A L}\left(C_{B 2}-C_{B}\right)-\frac{k_{1} C_{B}}{\left(1+k_{2} C_{B}\right)^{2}}
\end{aligned}
$$

At steady state, the system is reduced to:

$$
\begin{aligned}
& 0=F_{1}+F_{2}-\alpha \sqrt{L} \\
& 0=\frac{F_{1}}{A L}\left(C_{B 1}-C_{B}\right)+\frac{F_{2}}{A L}\left(C_{B 2}-C_{B}\right)-\frac{k_{1} C_{B}}{\left(1+k_{2} C_{B}\right)^{2}}
\end{aligned}
$$

Implementing Newton's Method for Simultaneous Nonlinear Equations using computer tools

For quick and simple way to solve theses types of equations, one could use : Excel or Matlab.

																	\%
	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	
1																	
2	SOLVING EXAMPLE 3.6 CSTR model (pg 79: Emad, A, Ajbar, A. and Alhumaizi, K., Introduction to Numerical Methodes...)																
3																	
4	The given data						The system $\left\{\begin{array}{l}f_{1}\left(x_{1}, x_{2}\right)=w_{1}+w_{2}-\alpha \cdot \sqrt{x_{1}}=0 \\ f_{2}\left(x_{1}, x_{2}\right)=\frac{w_{1}}{x_{1}} \cdot\left(c b_{1}-x_{2}\right)+\frac{w_{2}}{x_{1}} \cdot\left(c b_{2}-x_{2}\right)-\frac{k 1 \cdot x_{2}}{\left(1+k 2 \cdot x_{2}\right)^{2}}=0\end{array}\right.$										
5		cb1 $=$	24.9		k1 =	1											
6		cb2 =	0.1		$\mathrm{k} 2=$	1											
7					$\alpha=$	0.2											
8		w1 =	1														
9		w2 =	1				$\left\{\begin{array}{l} \frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}, x_{2}\right)=-\frac{\alpha}{2} \cdot \frac{1}{\sqrt{x_{1}}} \text { and } \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}, x_{2}\right)=0 \\ \frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}, x_{2}\right)=-\frac{w_{1}}{x_{1}^{2}} \cdot\left(c b_{1}-x_{2}\right)-\frac{w_{2}}{x_{1}^{2}} \cdot\left(c b_{2}-x_{2}\right) \text { and } \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}, x\right. \end{array}\right.$										
10																	
11		$x 1=$	L	(cm)													
12		$x 2=$	Cb	(mol./m3)											$2 \cdot x$		
13														$\frac{2}{c_{1}}-\mathrm{K}_{1}$	${ }_{2} \cdot x$		
14																	
15														$\boldsymbol{J}=$			
16		iteration	L	Cb		f1(x1,x2)	f2(x1,x2)		J(1,1)	J(1,2)	$J(2,1)$	J(2,2)	$\left(\begin{array}{ll} \left.\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}, x_{2}\right)\right\|_{\text {old }} & \left.\frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}, x_{2}\right)\right\|_{\text {old }} \\ \left.\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}, x_{2}\right)\right\|_{\text {old }} & \left.\frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}, x_{2}\right)\right\|_{\text {old }} \end{array}\right)$				
17	initial estimate \rightarrow	0	85	1.600		0.15609	0.01978		-0.01085	0.00000	-0.00302	0.01061					
18		1	99.39	3.828		0.00610	0.01028		-0.01003	1.00000	-0.00176	0.00500					
19		2	100.00	1.988		0.00001	-0.01243		-0.01000	2.00000	-0.00210	0.01703					
20		3	100.00	2.717		0.00000	-0.00099		-0.01000	3.00000	-0.00196	0.01343					
21		4	100.00	2.791		0	-2E-05		-0.01	4	-0.00194	0.01287					
22	final solution \rightarrow	5	100.00	2.793		0	-9.7E-09		-0.01	5	-0.00194	0.01286					
																	+

Using Matlab

- Solving this example using Matlab maybe obtained with the help of symbolic derivation of the Jacobian matrix, followed by its evaluation and resolution of the system J. $\boldsymbol{\delta}=\mathbf{- f}$
- The following Matlab M-file contains all the commands leading to a formatted solution in the form of summarized table of iterations
-Note that the text in green color and preceded by \% contain comments and explanation
-Black text contain the Matlab executable commands or program statements

Implementing the "fsolve" command

Consider a system of non-linear equations to be solved using
MATLAB

$$
\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots x_{k}\right)=0 \\
f_{2}\left(x_{1}, \ldots x k\right)=0 \\
\vdots \\
\vdots \\
f_{k}\left(x_{1}, \ldots . x_{k}\right)=0
\end{array}\right.
$$

\rightarrow The Matlab "fsolve" function maybe simply used by converting the system of equation into a function-script, then execute the "fsolve" command externally.
\rightarrow The syntax is
solution = fsolve (@TheSystem,TheSatrtingGuess,options)

Writing the system and calling the fsolve

```
function F=TheSystem(x);
% This script will contain the components of the system of
% non-linear equations to be solved
%
F(1)=............."write here equ. 1f(1)"
F(2)=............"write here equ. 1 f(2)"
:
F(k)=
    .............."write here equ. 1 f(k)".
```

```
% The main program
:
:
% use the fsolve to get the solution
solution=fsolve(@TheSystem,xo)
```


Illustrative example

It is desired to estimate the steady state values of the height ($\mathrm{L} \infty$) of the solution in CSTR and the final concentration ($\mathbf{C b} \infty$)
\rightarrow Use the overall conservation of mass and component balances to obtain a system of two equations as a function of L and $C b$
\rightarrow Write the steady state system of equations and solve

Using fsolve with numerical evaluation of Jacobian

```
% The Main program
clear all
% Step 1. Define given data
global alpha cb1 cb2 k1 k2 u1 u2 F1 F2
cb1=24.9;cb2=0.1; % Feed Concentration of components B1 and B2
k1=1;k2=1; % Reaction rate constants k1 and k2
A=1; % CSTR cross-sectional area
alpha = 0.2
% valve coeffecient
F1=1;F2=1; % Feed volumetric flow rate of B1 and B2
u1=F1/A;u2=F2/A;
% Step 2. initial estimates and parameters initializations
x0=[85;1.6];
% Step 3. use "fsolve" to compute the solution
solution=fsolve(@CSTRSystem,x0)
options = optimoptions('fsolve','Display','iter');
%options = optimoptions('fsolve','Display','iter');
[x,fval,exitflag,output] = fsolve(@CSTRSystem,x0,options);
x,fval,exitflag
```


Using fsolve with numerical evaluation of Jacobian

```
function F=CSTRSystem(x)
global alpha cb1 cb2 k1 k2 u1 u2 F1 F2
F(1)=F1+F2-alpha *sqrt(x(1));
F}(2)=u1/x(1)*(cb1-x(2))+u2/x(1)*(cb2-x(2))-k1*x(2)/(1+k2*x(2))^2
```


Using fsolve with analytical evaluation of Jacobian

\% The Main program with analatyical jacobian
clear all
\% Step 1. Define given data
global alpha cb1 cb2 k1 k2 u1 u2 F1 F2
$\mathrm{cb} 1=24.9 ; \mathrm{cb} 2=0.1$; Feed Concentration of components B1 and B2
$k 1=1 ; k 2=1$;
\% Reaction rate constants $k 1$ and k2

```
A=1; % CSTR cross-sectional area
```

alpha $=0.2$;
F1=1;F2=1; \quad Feed volumetric flow rate of B1 and B2
$u 1=F 1 / A ; u 2=F 2 / A$;
\% Step 2. initial estimates and parameters initializations
$x 0=[85 ; 1.6]$;
\% Step 3. use "fsolve" to compute the solution
options = optimoptions('fsolve','Display','iter','Jacobian','on');
\%solution=fsolve (@JCSTRSystem,x0)
[x,fval,exitflag,output] = fsolve(@JCSTRSystem,x0,options);
x,fval,exitflag

Using fsolve with analytical evaluation of Jacobian

```
function [F,Jac] =JCSTRSystem(x)
global alpha cb1 cb2 k1 k2 u1 u2 F1 F2
F(1)=F1+F2-alpha *sqrt(x(1));
F}(2)=u1/x(1)*(cb1-x(2))+u2/x(1)*(cb2-x(2)) -
k1*x(2)/(1+k2*x(2))^2;
% Evaluate the Jacobian matrix
Jac = zeros (2,2);
Jac(1,1)= -0.5 * alpha / sqrt(x(1));
Jac(2,1)= - 1/x(1)^2 *(ul* (cb1-x(2)) + u2* (cb2-x(2)));
Jac(2,2) = -ul/x(1) - u2/x(1)-(k1/(1+k2*x(2) )^2 -
2*k1*k2*x(2)/(1+k2*x(2))^3);
return;
```


Using Matlab

The Matlab output is
solution =
100
2.7925

