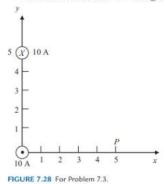
Department of Electrical engineering College of Engineering EE 351 Electromagnetic Fields Problem Set 6 (Magnetic Field)

Biot and Savart law (Section 7.2) Problem 1

PRACTICE EXERCISE 7.2

The positive y-axis (semi-infinite line with respect to the origin) carries a filamentary current of 2 A in the $-\mathbf{a}_y$ direction. Assume it is part of a large circuit. Find \mathbf{H} at

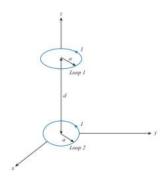

(a) A(2, 3, 0)

(b) B(3, 12, -4)

Answer: (a) $145.8a_z \text{ mA/m}$, (b) $48.97a_x + 36.73a_z \text{ mA/m}$.

Problem 2

7.3 Two infinitely long wires, placed parallel to the z-axis, carry currents 10 A in opposite directions as shown in Figure 7.28. Find H at point P.


Problem 3

A circular loop located on $x^2 + y^2 = 9$, z = 0 carries a direct current of 10 A along \mathbf{a}_{ϕ} . Determine \mathbf{H} at (0,0,4) and (0,0,-4).

Problem 4

7.16 Two identical loops are parallel and separated by distance d as shown in Figure 7.35.
Calculate H at (0, 0, d) assuming that a = 3 cm, d = 4 cm, and I = 10 A.

Problem 5

PRACTICE EXERCISE 7.3

A thin ring of radius 5 cm is placed on plane z = 1 cm so that its center is at (0, 0, 1 cm). If the ring carries 50 mA along \mathbf{a}_{do} find \mathbf{H} at

- (a) (0, 0, -1 cm)
- (b) (0, 0, 10 cm)

Answer: (a) 400a, mA/m, (b) 57.3a, mA/m.

Problem 6

PRACTICE EXERCISE 7.4

The solenoid of Figure 7.9 has 2000 turns, a length of 75 cm, and a radius of 5 cm. If it carries a current of 50 mA along $a_{\rm th}$, find H at

- (a) (0,0,0)
- (b) (0, 0, 75 cm)
- (c) (0, 0, 50 cm)

Answer: (a) 66.52a, A/m, (b) 66.52a, A/m, (c) 131.7a, A/m.

Ampere's law (Section 7.3) Problem 7

EXAMPLE 7.5

Planes z=0 and z=4 carry current ${\bf K}=-10{\bf a}_x$ A/m and ${\bf K}=10{\bf a}_x$ A/m, respectively. Determine ${\bf H}$ at

- (a) (1, 1, 1)
- (b) (0, -3, 10)

Problem 8

PRACTICE EXERCISE 7.5

Plane y = 1 carries current $K = 50a_z \text{ mA/m}$. Find H at

- (a) (0,0,0)
- (b) (1, 5, -3)

Problem 9

7.21 The z = 0 plane carries current K = 10a_x A/m, while current filament situated at y = 0, z = 6 carries current I along a_x. Find I such that H(0, 0, 3) = 0.

Problem 10

PRACTICE EXERCISE 7.6

A toroid of circular cross section whose center is at the origin and axis the same as the z-axis has 1000 turns with $\rho_{\rm o}=10$ cm, a=1 cm. If the toroid carries a 100 mA current, find |H| at

- (a) (3 cm, -4 cm, 0)
- (b) (6 cm, 9 cm, 0)

Problem 11

7.23 An infinitely long cylindrical conductor of radius a is placed along the z-axis. If the current density is $J = \frac{J_o}{a} a_z$, where J_o is constant, find H everywhere.