Mechanical Engineering Department College of Engineering University of Bisha

قسم المرحسة الميكازيكية كلية المرحسة جامعة ببدة

Solved Problem (2)

Figure (1)

For the shown steel loaded simply supported beam (Figure 1) get the following:

1. Beam reactions and bending moment diagram. Identify the value and the position of the maximum bending value in (N.mm).

2. Design the given <u>steel</u> loaded simply supported beam (Figure 2) <u>on static flexural stress</u> by getting the suitable cross-section among the following three cross-sections:

(a) Solid square section (I), (b) Box square section (II) and (c) <u>Standard</u> I-beam section (III) in both x-x and y-y <u>positions</u>.

3. Get the factor of safety (n) for each standard cross-section.

4. If each 1 kg of the used structural steel (steel density 7.8 g/cm³) beam costs <u>20 SAR</u>, calculate the cost of each designed cross-section beam and show <u>how much did you save</u> in <u>SAR</u> by selecting the lighter one?

(Use design factor $(n_d) = 3$ and material's yield strength =390 MPa)

Prof. Ashraf A. Ali

PhD Drexel University, USA 2002 Visiting Scientist, MIT, USA 2007 Professor, Mechanical Engineering Department, College of Engineering, University of Bisha 1st Term AY 1441-1442/ 2020-2021

Problem (2)

2/6 Problem (2)

To get x at M = Mmax OM(x) OX =0 $M(x) = \frac{21}{4}x - \frac{1}{3}(x-2)^{3}$ $M(x) = \frac{21}{4}x - \frac{1}{3}(x^3 - 6x^2 + 12x - 8)$ $\frac{\partial M(x)}{\partial x} = 0 = \frac{21}{4} - \frac{1}{3} \left(3x^2 - 12x + 12 \right)$ $5.25 - x^2 + 4x - 4 = 0$ $-\chi^{2} + 4\chi + 1.25 = 0$ accepted X = 4.2913 mor Refused X = - 0. 2913 X $M_{max} = \frac{21}{4} (4.2913) - \frac{1}{3} (4.2913-2)^{3}$ Mmax = 18.5195 KN.m Q X = 4.2913 mSee ____ B.M.D [P. 1/6]

3/6 problem (2)

416

from Table $I_{y-y} \Rightarrow Z_{ist.} = 151 \times 10^3$ From Table $I_{X-X} \Rightarrow Z_{1St} = 159 \pm 10^{3}$

Iy-y > W200X46 Ix-x > W150×22 To calculate the factor of safety for each standard cross-section get Zist. $Z_{151.} = \frac{(95)^3}{6} = 142.896 \times 10^3 \text{ mm}^3$ Z_{1} st. $E_{125}^{12.5} = 0.081333(25)^{3} = 158.854 \times 10^{3}$ $M = \frac{6y \cdot Zst}{Mmax}$ M = 3.01 $\Pi \square 125 = 3.35$ $MI_{x-x} = 3.35$ M Iy-y = 3.18

$$\frac{576}{976} \frac{\text{problem (2)}}{\text{problem (2)}}$$
To Calculate the Mass of each cross-
sectional beam use the following
Mass = Nolume & density
Nolume = area & Length
For $\boxed{293} \Rightarrow W(\text{kg}) = (9.5)^2 \times (800) \times \frac{7.8}{1000}$
For $\boxed{125} \Rightarrow W(\text{kg}) = [(2.5)^2 - (0.8412.5)] \times 800 \times \frac{7.8}{100}$
For $\boxed{125} \Rightarrow W(\text{kg}) = [(2.5)^2 - (0.8412.5)] \times 800 \times \frac{7.8}{100}$
For $\boxed{1}_{7.5} \times W(\text{kg}) = [(2.5)^2 - (0.8412.5)] \times 800 \times \frac{7.8}{100}$
For $\boxed{1}_{7.5} \times W(\text{kg}) = [(2.5)^2 - (0.8412.5)] \times 800 \times \frac{7.8}{100}$
The Required Answers for
Weight and Cost summarizes
in The following table
 $\boxed{P616}$

6/6 Problem (2)

Shape	Z. * 103	n	Standard Dimensions	Weight	Cost SAR
	142.896	3.01	95X95	563.2	11263
	158.854	3.35	125 X 125	351	702C
Т У-У	151	3.18	W200X46	368	736c
T X-X	159	3.35	W150 X22	176	3520

Saved money = 11263-3520 = 7743 SA Per Beam the Best cross-section is IX-X Then Box EN For aircraft Then Box EN and automobile Then IY-Y and automobile Then Solid EN