

Figure 6-18

Fatigue strength fraction, f, of S_{ut} at 10³ cycles for $S_e = S'_e = 0.5S_{ut}$ at 10⁶ cycles.

Table 17-2

Properties of Some Flat- and Round-Belt Materials. (Diameter = d, thickness = t, width = w)

Material	Specification	Size, in	Minimum Pulley Diameter, in	Allowable Tension per Unit Width at 600 ft/min, Ibf/in	Specific Weight, Ibf/in ³	Coefficient of Friction
Leather	1 ply	$t = \frac{11}{64}$	3	30	0.035-0.045	0.4
		$t = \frac{13}{64}$	$3\frac{1}{2}$	33	0.035-0.045	0.4
	2 ply	$t = \frac{18}{64}$	$4\frac{1}{2}$	41	0.035-0.045	0.4
		$t = \frac{20}{64}$	6 ^{<i>a</i>}	50	0.035-0.045	0.4
		$t = \frac{23}{64}$	9^a	60	0.035-0.045	0.4
Polyamide ^b	$F-0^{c}$	t = 0.03	0.60	10	0.035	0.5
	$F-1^{c}$	t = 0.05	1.0	35	0.035	0.5
	$F-2^{c}$	t = 0.07	2.4	60	0.051	0.5
	$A-2^{c}$	t = 0.11	2.4	60	0.037	0.8
	$A-3^c$	t = 0.13	4.3	100	0.042	0.8
	$A-4^c$	t = 0.20	9.5	175	0.039	0.8
	$A-5^c$	t = 0.25	13.5	275	0.039	0.8
Urethane ^d	w = 0.50	t = 0.062	See	5.2 ^e	0.038-0.045	0.7
	w = 0.75	t = 0.078	Table	9.8 ^e	0.038-0.045	0.7
	w = 1.25	t = 0.090	17-3	18.9^{e}	0.038-0.045	0.7
	Round	$d = \frac{1}{4}$	See	8.3 ^e	0.038-0.045	0.7
		$d = \frac{3}{8}$	Table	18.6 ^e	0.038-0.045	0.7
		$d = \frac{1}{2}$	17-3	33.0 ^e	0.038-0.045	0.7
		$d = \frac{3}{4}$		74.3 ^e	0.038-0.045	0.7

^aAdd 2 in to pulley size for belts 8 in wide or more.

^bSource: Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

^cFriction cover of acrylonitrile-butadiene rubber on both sides.

^dSource: Eagle Belting Co., Des Plaines, Ill.

"At 6% elongation; 12% is maximum allowable value.

Table 17-3

Table 17-3			Ratio of	Ratio of Pulley Speed to Belt Length,			
Minimum Pulley Sizes for Flat and Round	Belt Style	Belt Size, in	Up to 250	rev/(ft · min) 250 to 499	500 to 1000		
Urethane Belts (Listed	Flat	0.50×0.062	0.38	0.44	0.50		
are the pulley diameters		0.75×0.078	0.50	0.63	0.75		
in inches).		1.25×0.090	0.50	0.63	0.75		
Source: Eagle Belting Co.,	Round	$\frac{1}{4}$	1.50	1.75	2.00		
Des Plaines, Ill.		3 8	2.25	2.62	3.00		
		$\frac{1}{2}$	3.00	3.50	4.00		
		$\frac{3}{4}$	5.00	6.00	7.00		

Table 17-4

	Small-Pulley Diameter, in						
Material	1.6 to 4	4.5 to 8	9 to 12.5	14, 16	18 to 31.5	Over 31.5	
Leather	0.5	0.6	0.7	0.8	0.9	1.0	
Polyamide, F-0	0.95	1.0	1.0	1.0	1.0	1.0	
F-1	0.70	0.92	0.95	1.0	1.0	1.0	
F-2	0.73	0.86	0.96	1.0	1.0	1.0	
A-2	0.73	0.86	0.96	1.0	1.0	1.0	
A-3	_	0.70	0.87	0.94	0.96	1.0	
A-4	_	_	0.71	0.80	0.85	0.92	
A–5	—	—	_	0.72	0.77	0.91	

Pulley Correction Factor C_P for Flat Belts*

*Average values of *C_P* for the given ranges were approximated from curves in the *Habasit Engineering Manual*, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

Table 17–5	ISO Pulley	Crown Height, in	ISO Pulley	Crown Height, in	
Crown Height and ISO	Diameter, in		Diameter, in	w ≤ 10 in	w > 10 in
Pulley Diameters for Flat Belts*	1.6, 2, 2.5	0.012	12.5, 14	0.03	0.03
Delts	2.8, 3.15	0.012	12.5, 14	0.04	0.04
	3.55, 4, 4.5	0.012	22.4, 25, 28	0.05	0.05
	5, 5.6	0.016	31.5, 35.5	0.05	0.06
	6.3, 7.1	0.020	40	0.05	0.06
	8,9	0.024	45, 50, 56	0.06	0.08
	10, 11.2	0.030	63, 71, 80	0.07	0.10

*Crown should be rounded, not angled; maximum roughness is $R_a = AA 63 \mu in$.

For flat belt Velocity correction factor $= C_v = 1$