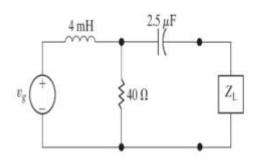


ELEE 250/ Electric Circuits II	Final Exam/ Summer 2020	120 Minutes Date: 19/07/2020
Student's Name:	Student's ID:	

Problem #1: A balanced three-phase Δ -connection generator with positive sequence has impedance $\mathbf{0}.\mathbf{6} + \mathbf{j} \mathbf{1}.\mathbf{5} \Omega$ feeds a balanced three-phase Δ -connected load with an impedance $\mathbf{117} + \mathbf{j84} \Omega$ through connected lines that have impedances of $\mathbf{0}.\mathbf{8} + \mathbf{j1}.\mathbf{5} \Omega$. The internal voltage is $120\sqrt{3} \angle 30^{\circ}$ V.

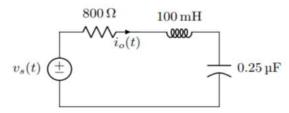
- a) Construct a single-phase equivalent circuit of the three-phase system.
- b) Obtain the phase currents I_{AB} , I_{BC} and I_{CA}
- c) Calculate the line currents I_{aA} , I_{bB} and I_{cC} .
- d) Find the phase voltages at load terminals (V_{AB} , V_{BC} and V_{CA}).
- e) Determine the line voltages.
- f) Determine phase voltages at the terminals of generator $(V'_{ab}, V'_{bc} and V'_{ca})$.
- g) Find the average power delivered to load.
- h) Calculate the total average power at load.
- i) Find the total power lost at line.
- j) Find the total power lost at generator.
- k) Determine the total reactive power (Q) absorbed by load.
- 1) Calculate the total complex power (S) delivered by source.

Problem #2: For the following circuit, $R = 10 \Omega$, L = 5 mH, and $C = 2 \mu F$.


- a) Find the resonant frequency and the half-power frequencies.
- b) Calculate the quality factor and bandwidth.
- c) Determine the amplitude of the current at ω_0 , ω_1 , and ω_2 .

Instructor: M Alsharari

Problem #3: For the entire circuit,


- a) If $\omega = 10 \, krad/sec$, obtain the load impedance.
- **b)** By assuming the $v_g(t) = 120 \sin(10,000t + 90^\circ) V$, find the maximum average power delivered to the load.

Problem #4: Find the steady state expression for $v_0(t)$ in the circuit shown below by using nodal analysis if $v_{g1} = 20 \sin(2000t + 53.14^\circ) V$ and $v_{g2} = 50 \cos(2000t - 106.26^\circ) V$.

Problem #5: Find the steady state expression for $i_{\circ}(t)$ in the circuit. If $v_s = 500 \sin(4000t) mV$.

Instructor: M Alsharari

Good Luck