Alasala University MEC432 Mechanical Design 1 Assignment 1: Shaft Design and Loading Analysis

Learning Outcomes of Assignment:

The primary aim of this assignment is to gain familiarity with the following concepts:

(a) Analysis of complex loading systems;

(b) Design of the shafts and analysis of the operating conditions.

ASSESSMENT.

This assignment will be assessed according to the following criteria (100 marks total) and it will contribute 20% towards the final mark of the course:

Plagiarism will not be tolerated and will result in 0 mark for both participating parties. You should not only present results but analyse them in accordance with the theoretical fundamentals and calculations, done by yourself.

System Overview.

As a mechanical design, the following set up is used:

You are required to design a intermediate shaft – the one shown as "Shaft" on the diagram above. Note, that the shaft is supported by two ball bearings on each end. The driver shaft and the driven shaft are placed in the horizontal and vertical place respectively, as shown on the second sketch. The torque is transmitted by two spur gears with an angle of teeth equal to 7^0 and arrangement of the teeth is shown above with points B and C (opposite angle on the gears). Transmitted power, rotational speed and outer diameters of the gears are added to the table below. Also, table includes required factor of safety and material, used to make the shaft. In addition, as the ball bearings are fixed on the shaft using the step, with the change in diameter of 10% (D_{small}=0.8 D_{shaft}) and with

smoothing radius of 0.15 of D_{small} Gears are connected to the shaft using the keys with subsequent cuts being added to the shaft. Distances are: $L_1=L_3=50$ mm.; $L_2=150$ mm. Not, that the bearings are placed at the end of the shaft, grooves to minimise axial dislocation are placed straight after the gears (points B and C).

		Transmitted	Rotational	Factor	Material	Diameter	Diameter
		Power, kW	Speed,	of		of Small	of Large
			rpm	Safety		gear, mm	Gear,
First name	Surname		-			-	mm
Al Alhareth	Salem	6.16	725	1.25	ANSI1020	15	26
Al Ali	Ahmed	11.24	925	1.43	ANSI1030	26	44
					UNSG		
Al Otaibi	Mohammad	11.04	1425	4.61	10350	50	80
Al Qadhib	Sulaiman	13.81	1600	5.56	ANSI1020	46	100
Alabdulqadir	Mashal	7.89	3000	4.24	ANSI1030	20	48
					UNSG		
Alahmadi	Mohammed	14.65	2500	1.94	10350	28	56
Albathr	Ali	11.33	550	3.36	ANSI1020	56	94
Alburaik	Saud	2.72	800	4.83	ANSI1030	32	64
					UNSG		
Aldossary	Khalifa	2.89	750	4.01	10350	50	96
Aldossary	Nawaf	12.78	1150	2.03	ANSI1020	34	86
Aleid	Waleed	5.38	2025	5.7	ANSI1030	40	66
					UNSG		
Alfayez	Saleh	12.04	1100	2.3	10350	18	58
ALGAHURI	MOHANAD	5.46	1450	2.15	ANSI1020	28	58
AlGhamdi	Ahmed	10.03	975	2.54	ANSI1030	40	86
					UNSG		
Alhabas	Mohammed	12.86	625	2.42	10350	36	78
Alhajri	Abdulaziz	2.95	2225	3.84	ANSI1020	58	88
Alhalafi	Omar	14.35	425	1.46	ANSI1030	58	104
					UNSG		
Alhazim	Mohammed	2.75	2750	4.71	10350	38	68
Aljuraifani	Abdulaziz	12.92	2250	2.1	ANSI1020	54	96
Alkhaldi	Mohammed	8.80	2375	1.36	ANSI1030	14	30
					UNSG		
Alkhannani	Sakhr	11.77	925	1.87	10350	42	88
Alkorbi	Hamad	10.58	400	2.12	ANSI1020	22	52
Alkraidees	Bandar	2.97	850	1.34	ANSI1030	34	86
					UNSG		
ALMALEHI	RAJA	7.72	1425	5.36	10350	70	144
Almalihi	Fahad	0.38	1800	5.23	ANSI1020	28	60
Almomen	Ahmad	6.41	750	1.89	ANSI1030	36	80
					UNSG		
Almotairi	Mohammed	14.07	925	5.75	10350	20	60
ALOTAIBI	Mohammed	4.37	1850	4.8	ANSI1020	48	90

Alotaibi	Abdulrahman	8.89	1475	4.21	ANSI1030	30	88
					UNSG		
Alqahtani	Faisal	14.84	1500	4.53	10350	22	60
AlQahtani	Nasser	4.59	1600	1.72	ANSI1020	22	44
Alsaloly	Rashed	12.00	1425	3.74	ANSI1030	80	100
					UNSG		
Alsaqer	Mohammed	12.20	1900	4.18	10350	22	60
Alsenan	Hassan	12.48	2750	4.12	ANSI1020	30	66
Alshabaan	Fares	1.74	1450	4.14	ANSI1030	25	68
					UNSG		
AlShamsy	Abdullah	8.94	2250	4.39	10350	93	144
Alzahrani	Saleh	2.28	1100	2.6	ANSI1020	34	58
Bamasoud	Omar	10.33	2125	2.23	ANSI1030	52	98
					UNSG		
Haidan	Mohammed	2.23	1675	2.06	10350	28	52
HUSSEIN	HAMAD	1.96	2275	1.21	ANSI1020	30	80
Lsluom	Saleh	4.07	825	1.16	ANSI1030	44	66
					UNSG		
MURRAH	FAISAL	4.30	1250	3.39	10350	30	45
Sharaf	Mousa	4.34	950	4.88	ANSI1020	44	88
YAHYA	NAWAF	14.75	875	3.15	ANSI1030	36	70

Provided analysis should include the following steps:

- a) Calculate applied torque to the shaft and forces, applied to the gears (5 Points);
- b) Find reaction forces and draw required loading diagrams (20 Points);
- c) Calculate the location of the highest load and associated stresses (20 Points);
- d) Plot the Mohr's circle and find equivalent stresses (20 Points);
- e) Using FOS calculate diameter of the shaft (note, that until this moment the shaft diameter should be added as unknown) (20 Points);
- f) Using mechanical catalogues, choose preferred diameter (5 Points);
- g) Calculate and select required keys to the system using mechanical standards (10 Points).

What to submit:

You should clearly write all solutions to the questions and separate the calculations.

You should scan the solutions if they are hand-written.

Submit the file via LMS Dropbox.

You must attach a title page with information: course title, assignment name and your student ID and name.