Chapter 1

CONIC SECTIONS

1.1 Parabola

1.2 Ellipse

1.3 Hyperbola

1.1 Parabola

Definition: A **parabola** is the set of all points in the plane equidistant from a fixed point F (called the **focus**) and a fixed line D (called the **directrix**) in the same plane.

Notes:

- 1. The line passing through the focus F and perpendicular to the directrix D is called the ${\bf axis}$ of the parabola .
- 2. The point half-way from the focus F to the directrix D is called the ${\bf vertex}$ of the parabola and is denoted by V .

1.1.1 The vertex of the parabola is the origin :

This section discusses the special case where the vertex of the parabola is (0, 0). There are four different cases :

 $\mathbf{6}$

The parabola opens upwards .

The focus is F(0, a).

The equation of the directrix is y = -a.

The axis of the parabola is the y-axis .

2) $x^2 = -4ay$, where a > 0

The parabola opens downwards (note the negative sign in the formula).

The focus is F(0, -a).

The equation of the directrix is y = a.

The axis of the parabola is the y-axis .

3)
$$y^2 = 4ax$$
, where $a > 0$

The parabola opens to the right.

The focus is F(a, 0).

The equation of the directrix is x = -a.

The axis of the parabola is the x-axis .

4) $y^2 = -4ax$, where a > 0

The parabola opens to the left (note the negative sign in the formula) .

The focus is F(-a, 0).

The equation of the directrix is x = a.

The axis of the parabola is the x-axis .

Example 1: Find the focus and the directrix of the parabola $x^2 = 4y$, and sketch its graph.

Solution: Since the variable x is of degree 2 and the formula contains a positive sign then $x^2 = 4y$ is similar to case(1), where the parabola opens upwards . $4a = 4 \Rightarrow a = 1$

The focus is F(0,1), and the equation of the directrix is y = -1.

8

Example 2: Find the focus and the directrix of the parabola $y^2 = -8x$, and sketch its graph.

Solution: Since the variable y is of degree 2 and the formula contains a negative sign then $y^2 = -8x$ is similar to case(4), where the parabola opens to the left.

 $-4a = -8 \Rightarrow a = 2$

The focus is F(-2,0), and the equation of the directrix is x = 2.

1.1.2 The general formula of a parabola :

This section discusses the general formula of a parabol where the vertex of the parabola is any point V(h, k) in the plane.

There are four different cases :

No.	The general formula	Focus	Directrix	The parabola opens
1	$(x-h)^2 = 4a(y-k)$	F(h, k+a)	y = k - a	upwards
2	$(x-h)^2 = -4a(y-k)$	F(h, k-a)	y = k + a	downwards
3	$(y-k)^2 = 4a(x-h)$	F(h+a,k)	x = h - a	to the right
4	$(y-k)^2 = -4a(x-h)$	F(h-a,k)	x = h + a	to the left

Example 1: Find the focus and the directrix of the parabola $(x + 1)^2 = -4(y - 1)$, and sketch its graph.

Solution : The equation of the parabola is similar to case (2). $(x-h)^2 = (x+1)^2 = (x-(-1))^2 \Rightarrow h = -1$.

 $(y-k) = (y-1) \Rightarrow k = 1$.

 $-4a = -4 \Rightarrow a = 1$.

The vertex is V(-1,1)

The focus is F(-1,0) and the equation of the directrix is y = 2.

The parabola opens downwards (note the negative sign in the formula).

Example 2: Find the focus and the directrix of the parabola $(y-1)^2 = 8(x+2)$, and sketch its graph.

Solution : The equation of the parabola is similar to case (3).

$$(y-k)^2 = (y-1)^2 \implies k=1$$
.

 $(x-h) = (x+2) = (x-(-2)) \implies h = -2.$

 $4a = 8 \Rightarrow a = 2$. The vertex is V(-2, 1)

The focus is F(0, 1) and the equation of the directrix is x = -4. The parabola opens to the right.

Example 3: Find the focus and the directrix of the parabola $2y^2 - 4y + 8x + 10 = 0$, and sketch its graph.

Solution : By completing the square $2y^2 - 4y + 8x + 10 = 0 \Rightarrow 2y^2 - 4y = -8x - 10 \Rightarrow 2(y^2 - 2y) = -8x - 10$ $\Rightarrow 2(y^2 - 2y + 1) = -8x - 10 + 2 \Rightarrow 2(y - 1)^2 = -8x - 8 \Rightarrow 2(y - 1)^2 = -8(x + 1)$ $\Rightarrow (y - 1)^2 = -4(x + 1)$ The equation of the parabola is similar to case (4). $(y - k)^2 = (y - 1)^2 \Rightarrow k = 1$. $(x - h) = (x + 1) = (x - (-1)) \Rightarrow h = -1$. $-4a = -4 \Rightarrow a = 1$. The vertex is V(-1, 1). The focus is F(-2, 1) and the equation of the directrix is x = 0 (the y-axis).

The focus is F(-2, 1) and the equation of the directrix is x = 0 (the y-axis) The parabola opens to the left (note the negative sign in the formula)

Example 4: Find the focus and the directrix of the parabola $x^2 - 6y - 2x = -7$, and sketch its graph.

Solution : By completing the square $x^2 - 6y - 2x = -7 \Rightarrow x^2 - 2x = 6y - 7 \Rightarrow x^2 - 2x + 1 = 6y - 7 + 1$ $\Rightarrow (x - 1)^2 = 6y - 6 \Rightarrow (x - 1)^2 = 6(y - 1)$ The equation of the parabola is similar to case (1). $(x - h)^2 = (x - 1)^2 \Rightarrow h = 1$. $(y - k) = (y - 1)) \Rightarrow k = 1$. $4a = 6 \Rightarrow a = \frac{6}{4} = \frac{3}{2}$. The vertex is V(1, 1)The focus is $F\left(1, \frac{5}{2}\right)$ and the equation of the directrix is $y = -\frac{1}{2}$. The parabola opens upwards.

Example 5: Find the equation of the parabola with vertex V(2, 1) and focus F(2, 3) and sketch its graph.

Solution : Since the focus is located upper than the vertex then the parabola opens upwards.

Hence its equation is $(x - h)^2 = 4a(y - k)$. Since the vertex is V(2, 1) then h = 2 and k = 1*a* equals the distance between V(2, 1) and F(2, 3) which equals 2. The equation of the parabola with V(2, 1) and F(2, 3) is $(x - 2)^2 = 8(y - 1)$

12

1.1. PARABOLA

Example 6: Find the equation of the parabola with focus F(-1,1) and directrix x = 1 and sketch its graph.

Solution : Since the focus is located to the left of the directrix then the parabola opens to the left.

Hence its equation is $(y-k)^2 = -4a(x-h)$. The vertex is half-way between the focus and the directrix , hence V(0,1)a equals the distance between V(0,1) and F(-1,1) which equals 1. The equation of the parabola with F(-1,1) and directrix x = 1 is $(y-1)^2 = -4x$

1.2 Ellipse

Definition: An **ellipse** is the set of all points in the plane for which the sum of the distances to two fixed points is constant.

Notes :

- 1. The two fixed points are called the **foci** of the ellipse and are denoted by F_1 and F_2 .
- 2. The midpoint between F_1 and F_2 is called the **center** of the ellipse and is denoted by P.
- 3. The endpoints of the **major axis** are called the vertices of the ellipse and are denoted by V_1 and V_2 .
- 4. The endpoints of the **minor axis** are denoted by W_1 and W_2 .

1.2.1 The center of the ellipse is the origin :

This section discusses the special case where the center of the ellipse is (0,0). There are two different cases :

1)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, where $a > b$:

The foci of the ellipse are $F_1(-c,0)$ and $F_2(c,0)$, where $c = \sqrt{a^2 - b^2}$.

The vertices of the ellipse are $V_1(-a, 0)$ and $V_2(a, 0)$.

The endpoints of the minor axis are $W_1(0, b)$ and $W_2(0, -b)$.

The major axis lies on the x-axis , and its length is 2a.

The minor axis lies on the y-axis , and its length is 2b.

2)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, where $b > a$:

The foci of the ellipse are $F_1(0,c)$ and $F_2(0,-c)$, where $c = \sqrt{b^2 - a^2}$. The vertices of the ellipse are $V_1(0,b)$ and $V_2(0,-b)$. The endpoints of the minor axis are $W_1(-a,0)$ and $W_2(a,0)$. The major axis lies on the y-axis, and its length is 2b. The minor axis lies on the x-axis, and its length is 2a.

Example 1: Identify the features of the ellipse $9x^2 + 25y^2 = 225$, and sketch its graph.

Solution: $9x^2 + 25y^2 = 225 \Rightarrow \frac{9x^2}{225} + \frac{25y^2}{225} = 1 \Rightarrow \frac{x^2}{25} + \frac{y^2}{9} = 1$ $a^2 = 25 \Rightarrow a = 5 \text{ and } b^2 = 9 \Rightarrow b = 3.$ Since a > b then $\frac{x^2}{25} + \frac{y^2}{9} = 1$ is similar to case (1). $c = \sqrt{a^2 - b^2} = \sqrt{25 - 9} = \sqrt{16} = 4.$ The foci are F_1 (-4, 0) and F_2 (4, 0). The vertices are V_1 (-5, 0) and V_2 (5, 0). The endpoints of the minor axis are $W_1(0,3)$ and $W_2(0,-3)$. The length of the major axis is 2a = 10. The length of the minor axis is 2b = 6.

Example 2: Identify the features of the ellipse $16x^2 + 9y^2 = 144$, and sketch its graph.

Its graph. **Solution :** $16x^2 + 9y^2 = 144 \Rightarrow \frac{16x^2}{144} + \frac{9y^2}{144} = 1 \Rightarrow \frac{x^2}{9} + \frac{y^2}{16} = 1$ $a^2 = 9 \Rightarrow a = 3 \text{ and } b^2 = 16 \Rightarrow b = 4.$ Since b > a then $\frac{x^2}{9} + \frac{y^2}{16} = 1$ is similar to case (2). $c^2 = \sqrt{b^2 - a^2} = \sqrt{16 - 9} = \sqrt{7}.$ The foci are $F_1(0, \sqrt{7})$ and $F_2(0, -\sqrt{7}).$ The vertices are $V_1(0, 4)$ and $V_2(0, -4).$ The endpoints of the minor axis are $W_1(-3, 0)$ and $W_2(3, 0).$ The length of the minor axis is 2b = 8.The length of the minor axis is 2a = 6.

1.2.2 The general formula of an ellipse :

This section discusses the general formula of an ellipse where the center of the ellipse is any point P(h, k) in the plane. There are two different cases :

No.	The general Formula	The Foci	The Vertices	W_1 and W_2			
1	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$F_1(h-c,k)$	$V_1(h-a,k)$	$W_1(h,k-b)$			
	($a > b$) and $c = \sqrt{a^2 - b^2}$	$F_2(h+c,k)$	$V_2(h+a,k)$	$W_2(h,k+b)$			
2	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$F_1(h,k-c)$	$V_1(h,k-b)$	$W_1(h-a,k)$			
	($b > a$) and $c = \sqrt{b^2 - a^2}$	$F_2(h,k+c)$	$V_2(h,k+b)$	$W_2(h+a,k)$			

Example 1: Find the equation of the ellipse with foci at (-3, 1), (5, 1), and one of its vertices is (7,1), and sketch its graph.

Solution : The center of the ellipse P(h, k) is located in the middle of the two foci, hence $(h,k) = \left(\frac{-3+5}{2}, \frac{1+1}{2}\right) = (1,1).$

c is the distance between the center and one of the foci , and it equals to 4 (see the figure).

Since the major axis (where the two foci lie) is parallel to the x-axis , then the general formula of the ellipse is $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$, where a > b. *a* is the distance between the center and one of the vertices, and it equals 6 (see the figure).

the figure). $c^2 = a^2 - b^2 \Rightarrow (4)^2 = (6)^2 - b^2 \Rightarrow b^2 = 36 - 16 = 20 \Rightarrow b = 2\sqrt{5}.$ The equation of the ellipse is $\frac{(x-1)^2}{36} + \frac{(y-1)^2}{20} = 1.$ The vertices of the ellipse are $V_1(-5,1)$ and $V_2(7,1).$

The endpoints of the minor axis are $W_1(1, 1+2\sqrt{5})$ and $W_2(1, 1-2\sqrt{5})$.

Example 2: Find the equation of the ellipse with foci at (2,5), (2,-3), and the length of its minor axis equals 6, and sketch its graph.

Solution : The center of the ellipse P(h, k) is located in the middle of the two foci, hence $(h, k) = \left(\frac{2+2}{2}, \frac{-3+5}{2}\right) = (2, 1).$

c is the distance between the center and one of the foci , and it equals to 4 (see the figure).

Since the major axis (where the two foci lie) is parallel to the y-axis , then the general formula of the ellipse is $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$, where b > a. The length of the minor axis is 6 means that $2a = 6 \Rightarrow a = 3$. $c^2 = b^2 - a^2 \Rightarrow (4)^2 = b^2 - (3)^2 \Rightarrow b^2 = 16 + 9 = 25 \Rightarrow b = 5$. The equation of the ellipse is $\frac{(x-2)^2}{9} + \frac{(y-1)^2}{25} = 1$. The vertices of the ellipse are $V_1(2, 6)$ and $V_2(2, -4)$. The endpoints of the minor axis are $W_1(-1, 1)$ and $W_2(5, 1)$.

Example 3: Find the equation of the ellipse with vertices at (-1, 4), (-1, -2) and the distance between its two foci equals 4, and sketch its graph. **Solution :** The center of the ellipse P(h, k) is located in the middle of the two vertices, hence $(h, k) = \left(\frac{-1-1}{2}, \frac{-2+4}{2}\right) = (-1, 1)$. The distance between the two foci equals 4 means that $2c = 4 \Rightarrow c = 2$. Since the major axis (where the two vertices lie) is parallel to the y-axis , then $(x - b)^2 = (x - b)^2$

the general formula of the ellipse is $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$, where b > a.

The length of the major axis (the distance between the two vertices) equals 6,

1.2. ELLIPSE

this means $2b = 6 \Rightarrow b = 3$. $c^2 = b^2 - a^2 \Rightarrow (2)^2 = (3)^2 - a^2 \Rightarrow a^2 = 9 - 4 = 5 \Rightarrow a = \sqrt{5}$. The equation of the ellipse is $\frac{(x+1)^2}{5} + \frac{(y-1)^2}{9} = 1$. The foci of the ellipse are $F_1(-1,3)$ and $F_2(-1,-1)$. The endpoints of the minor axis are $W_1(-1 - \sqrt{5}, 1)$ and $W_2(-1 + \sqrt{5}, 1)$.

Example 4: Identify the features of the ellipse $4x^2 + 2y^2 - 8x - 8y - 20 = 0$, and sketch its graph.

Solution :

 $\begin{array}{l} 4x^2 + 2y^2 - 8x - 8y - 20 = 0 \implies (4x^2 - 8x) + (2y^2 - 8y) = 20 \\ \Rightarrow \ 4(x^2 - 2x) + 2(y^2 - 4y) = 20 \\ \Rightarrow \ 4(x^2 - 2x) + 2(y^2 - 4y) = 20 \implies 4(x^2 - 2x + 1) + 2(y^2 - 4y + 4) = 20 + 12 \\ \Rightarrow \ 4(x - 1)^2 + 2(y - 2)^2 = 32 \\ \Rightarrow \ \frac{4(x - 1)^2}{32} + \frac{2(y - 2)^2}{32} = 1 \implies \frac{(x - 1)^2}{8} + \frac{(y - 2)^2}{16} = 1 \\ b^2 = 16 \implies b = 4 \text{ and } a^2 = 8 \implies b = \sqrt{8} = 2\sqrt{2}. \\ c^2 = b^2 - a^2 \implies c^2 = 16 - 8 = 8 \implies c = \sqrt{8} = 2\sqrt{2}. \\ \text{The center of the ellipse are } F_1\left(1, 2 + 2\sqrt{2}\right) \text{ and } F_2\left(1, 2 - 2\sqrt{2}\right). \\ \text{The vertices of the ellipse are } W_1\left(1 - 2\sqrt{2}, 2\right) \text{ and } W_2\left(1 + 2\sqrt{2}, 2\right) \\ \text{The length of the major axis is 8 and the length of the minor axis is <math>2\sqrt{8} = 4\sqrt{2}. \end{array}$

1.3 Hyperbola

Definition: A hyperbola is the set of all points in the plane for which the difference of the distances between two fixed points is constant.

Notes :

- 1. The two fixed points are called the **foci** of the hyperbola and are denoted by F_1 and F_2 .
- 2. The midpoint between F_1 and F_2 is called the **center** of the hyperbola and is denoted by P.

1.3.1 The center of the hyperbola is the origin :

This section discusses the special case where the center of the hyperbola is (0, 0). There are two different cases :

1)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, where $a > 0$ and $b > 0$:

The foci of the hyperbola are $F_1(-c, 0)$ and $F_2(c, 0)$, where $c = \sqrt{a^2 + b^2}$.

The vertices of the hyperbola are $V_1(-a, 0)$ and $V_2(a, 0)$.

The line segment between V_1 and V_2 is the **transverse axis**, it lies on the x-axis and its length is 2a.

The equations of the asymptotes are $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$.

2)
$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$
, where $a > 0$ and $b > 0$:

The foci of the hyperbola are $F_1(0,c)$ and $F_2(0,-c)$, where $c = \sqrt{a^2 + b^2}$.

The vertices of the hyperbola are $V_1(0, b)$ and $V_2(0, -b)$.

The line segment between V_1 and V_2 is the **transverse axis**, it lies on the y-axis and its length is 2b.

The equations of the asymptotes are $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$.

Example 1: Identify the features of the hyperbola $4x^2 - 16y^2 = 64$, and sketch its graph. Solution :

Solution : $4x^2 - 16y^2 = 64 \Rightarrow \frac{4x^2}{64} - \frac{16y^2}{64} = 1 \Rightarrow \frac{x^2}{16} - \frac{y^2}{4} = 1$ This form is similar to case (1). $a^2 = 16 \Rightarrow a = 4 \text{ and } b^2 = 4 \Rightarrow b = 2$ $c = \sqrt{a^2 + b^2} = \sqrt{4^2 + 2^2} = \sqrt{20} = 2\sqrt{5}$ The foci of the hyperbola are $F_1 (-2\sqrt{5}, 0)$ and $F_2 (2\sqrt{5}, 0)$. The vertices are $V_1(-4, 0)$ and $V_2(4, 0)$. The transverse axis lies on the x-axis and its length is 2a = 8. The equations of the asymptotes are $y = \frac{2}{4}x = \frac{1}{2}x$ and $y = -\frac{2}{4}x = -\frac{1}{2}x$

Example 2: Identify the features of the hyperbola $4y^2-9x^2=36$, and sketch its graph.

Its graph. Solution : $4y^2 - 9x^2 = 36 \Rightarrow \frac{4y^2}{36} - \frac{9x^2}{36} = 1 \Rightarrow \frac{y^2}{9} - \frac{x^2}{4} = 1$ This form is similar to case (2). $a^2 = 4 \Rightarrow a = 2$ and $b^2 = 9 \Rightarrow b = 3$ $c = \sqrt{a^2 + b^2} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13}$ The foci of the hyperbola are $F_1(0, \sqrt{13})$ and $F_2(0, -\sqrt{13})$. The vertices are $V_1(0, 3)$ and $V_2(0, -3)$. The transverse axis lies on the y-axis and its length is 2b = 6. The equations of the asymptotes are $y = \frac{3}{2}x$ and $y = -\frac{3}{2}x$

1.3.2 The general formula of a hyperbola :

This section discusses the general formula of a hyperbola where the center of the hyperbola is any point P(h,k) in the plane. There are two different cases

Т	There are two unreferr cases.							
	No.	The general Formula	The Foci	The Vertices	Transverse axis			
	1	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$F_1(h-c,k)$	$V_1(h-a,k)$	parallel to			
		$(c^2 = a^2 + b^2)$	$F_2(h+c,k)$	$V_2(h+a,k)$	the x-axis			
	2	$\frac{(y-k)^2}{h^2} - \frac{(x-h)^2}{a^2} = 1$	$F_1(h,k+c)$	$V_1(h,k+b)$	parallel to			
		$(c^2 = a^2 + b^2)$	$F_2(h,k-c))$	$V_2(h, k-b)$	the y-axis			

The equations of the asymptotes are $y = \frac{b}{a}(x-h) + k$ and $y = -\frac{b}{a}(x-h) + k$

Example 1: Find the equation of the hyperbola with foci at (-2,2), (6,2)and one of its vertices is (5,2), and sketch its graph. Solution :

The center of the hyperbola P(h,k) is located in the middle of the two foci ,

hence $(h, k) = \left(\frac{-2+6}{2}, \frac{2+2}{2}\right) = (2, 2)$ Note that the two foci lie on a line parallel to the x-axis , hence the general formula of the hyperbola is $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$. 2c is the distance between the two foci , hence $2c = 8 \Rightarrow c = 4$.

a is the distance between the center (2,2) and the vertex (5,2), hence a=3,

and the other vertex is (-1, 2). $c^2 = a^2 + b^2 \Rightarrow 4^2 = 3^2 + b^2 \Rightarrow b^2 = 16 - 9 = 7 \Rightarrow c = \sqrt{7}$. The equation of the hyperbola is $\frac{(x-2)^2}{9} - \frac{(y-2)^2}{\frac{7}{2}} = 1$

The equations of the asymptotes are $L_1: y = \frac{\sqrt{7}}{3}(x-2) + 2$ and

$$L_2: y = -\frac{\sqrt{7}}{3}(x-2) + 2$$

1.3. HYPERBOLA

Example 2: Find the equation of the hyperbola with foci at (-1, -6), (-1, 4) and the length of its transverse axis is 8, and sketch its graph. **Solution :**

The center of the hyperbola P(h, k) is located in the middle of the two foci , hence $(h, k) = \left(\frac{-1-1}{2}, \frac{-6+4}{2}\right) = (-1, -1)$ Note that the two foci lie on a line parallel to the y-axis , hence the general formula of the hyperbola is $\frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1$. 2c is the distance between the two foci , hence $2c = 10 \Rightarrow c = 5$. The length of the transverse axis is 8 , this means $2b = 8 \Rightarrow b = 4$. The vertices are (-1, -5) and (-1, 3). $c^2 = a^2 + b^2 \Rightarrow 5^2 = a^2 + 4^2 \Rightarrow a^2 = 25 - 16 = 9 \Rightarrow a = 3$. The equation of the hyperbola is $\frac{(y+1)^2}{16} - \frac{(x+1)^2}{9} = 1$. The equations of the asymptotes are $L_1: y = \frac{4}{3}(x+1) - 1$ and $L_2: y = -\frac{4}{3}(x+1) - 1$

Example 3: Find the equation of the hyperbola with center at (1,1), one of its foci is (5,1) and one of its vertices is (-1,1), and sketch its graph. **Solution :**

Since the center and the focus lie on a line parallel to the x-axis , then the

general formula of the hyperbola is $\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1$.
c is the distance between the center (1,1)
and the focus (5,1), hence c=4,

the other foci is (-3, 1).

a is the distance between the center (1,1) and the vertex (-1,1), hence a = 2

the other vertex is (3, 1). $c^2 = a^2 + b^2 \Rightarrow 4^2 = 2^2 + b^2 \Rightarrow b^2 = 16 - 4 = 12 \Rightarrow b = \sqrt{12} = 2\sqrt{3}$ The equation of the hyperbola is $\frac{(x-1)^2}{4} - \frac{(y-1)^2}{12} = 1$. The equations of the asymptotes are

$$L_1: y = \frac{2\sqrt{3}}{2}(x-1) + 1 = \sqrt{3}(x-1) + 1 \text{ and } L_2: y = -\sqrt{3}(x-1) + 1$$

Example 4: Identify the features of the hyperbola $2y^2 - 4x^2 - 4y - 8x - 34 = 0$, and sketch its graph.

Solution : Solution : $2y^2 - 4x^2 - 4y - 8x - 34 = 0 \Rightarrow (2y^2 - 4y) - (4x^2 + 8x) = 34$ $\Rightarrow 2(y^2 - 2y) - 4(x^2 + 2x) = 34$ $\Rightarrow 2(y^2 - 2y + 1) - 4(x^2 + 2x + 1) = 34 + 2 - 4 \Rightarrow 2(y - 1)^2 - 4(x + 1)^2 = 32$ $\Rightarrow \frac{2(y - 1)^2}{32} - \frac{4(x + 1)^2}{32} = 1 \Rightarrow \frac{(y - 1)^2}{16} - \frac{(x + 1)^2}{8} = 1$ $b^2 = 16 \Rightarrow b = 4 \text{ and } a^2 = 8 \Rightarrow a = \sqrt{8} = 2\sqrt{2}.$ $c^2 = a^2 + b^2 \Rightarrow c^2 = 16 + 8 = 24 \Rightarrow c = \sqrt{24} = 2\sqrt{6}.$ The current of the height b = 1 is P(-1, 1)The center of the hyperbola is P(-1, 1). The foci of the hyperbola are $F_1(-1, 1+2\sqrt{6})$ and $F_2(-1, 1-2\sqrt{6})$. The vertices of the hyperbola are $V_1(-1,5)$ and $V_2(-1,-3)$. The transverse axis is parallel to the y-axis and its length is 2b = 8. The equations of the asymptotes are

28