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6.1 Functions of several variables

6.1.1 Functions of two variables :
Definition: A function of two variables is a rule that assigns an ordered pair
(z,y) (in the domain of the function) to a real number w.

f:R2— R
(z,y) — w
Example :
T,y) = is a function of two variables x and
faw) = i wo v y
1 1

= o = —,
I8 =53 =15

1
Note that f(z,y) takes (3,1) € R? to 10 € R

6.1.2 Functions of three variables :
Definition: A function of three variables is a rule that assigns an ordered triple
(x,y,2) (in the domain of the function) to a real number w .

f:RP— R
('Tv Y, Z) — w
Example :
flz,y,2) = ﬁ is a function of three variables z , y and z
4 4 1
[T

1+(-22+3 8 2

1
Note that f(z,y,2) takes (1,—2,4) € R3 to 3 eRrR
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6.2 Partial derivatives

6.2.1 Partial derivatives of a function of two variables :
If w= f(z,y) is a function of two variables, then :
. o . . of Oow
1. The partial derivative of f with respect to x is denoted by 32 B2 [z
z x

or w, , and it is calculated by applying the rules of differentiation to x
and regarding y as a constant .
. .. . . of Ow
2. The partial derivative of f with respect to y is denoted by 50 D0 fy
Y Y
or wy , and it is calculated by applying the rules of differentiation to y
and regarding x as a constant .

Example 1: Calculate f, and f, of the functivon f(z,y) = 2?y> +zyln(z +y)
Solution:
1. fo= 9 (w2y3 + zyIn(z + y))
Oz

Yy
Tty

fo = (23:)3;3 + {(1)yln(x +y)+ay ] =2z + yln(x +y) +

Tty

0
2. f, = B (x2y3 + zyIn(z +y))

fy = 22(3y%) + {m(l)ln(x +y)+ YT y} =322y +axln(z+9y) + xaj’:_gy
: x4+ y?
Example 2: Calculate f, and f, of the functivon f(z,y) = T
rry
Solution:
1 f= g (1 +0)(z+y) — (r+y*)(1+0) _xty-— (x +9?)
T Ow (z +y)? (z+9?)
f _rty—z-y*  y—y°
’ (z +y)? (z +y)?
0 5. =0 _ O+2y)(z+y) —(z+y*)(O0+1) 2yl +y) - (z+y°)
oy ( +y)? (z +y)?
P 2oy +2y® —x —y?  2my—ax+y?
=

(z +y)?  (z4y)?
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6.2.2 Partial derivatives of a function of three variables :
If w= f(z,y,2) is a function of three variables, then :

af  ow

1. The partial derivative of f with respect to x is denoted by 92 m [z

or w, , and it is calculated by applying the rules of differentiation to z
and regarding y and z as constants .

of w4
oy Oy 7Y
or wy , and it is calculated by applying the rules of differentiation to y
and regarding x and z as constants .

2. The partial derivative of f with respect to y is denoted by

or ow
o . o 0z 0z 7"
or w, , and it is calculated by applying the rules of differentiation to z
and regarding x and y as constants .

3. The partial derivative of f with respect to z is denoted by

Example : If f(z,y,2) = 2232 — 4(2® + y?)z , then calculate f, , f, and f, at
(0,1,2).
Solution :

1. fo = 82 (2237 — 4(2® + y?)2) = 22° — 4(22)2 = 22° — 8az
z

f(0,1,2) =2 (2°) — 8(0)(2) = 16

2. fy = % (222 — 4(2® + y*)2) = 0—4(0+ 2y)z = —8yz

£4(0,1,2) = —8(1)(2) = ~16

3. f. = 82 (2232 — 4(2® + y?)2) = 62z — 4(2® + )
z

£2(0,1,2) = 6(2)(0) — 4(0* +1?) = —4

6.2.3 Second partial derivatives :
If w= f(z,y) is a function of two variables , then :

82f_8 afy 0 _

L. 33:2_833<8x>_6a:(f“")_f“'
(92f_8 af _8 B

2. ayg—ay(ay)—ay(fy)—fyy-

O’f 0 [(of\ 9 B
3. 90y~ O <8y> =9 (fy) = fya -

02 o [0 0

4. =— | = —
dydr Oy \ Oz oy
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Note : Second partial derivatives of a function of three variables are defined in
a same manner.

Theorem : Let f(z,y) be a function of two variables. If f , f, , f, , fzy and
fyz are continuous, then f,, = fy..

Note : If f(z,y, z) is a function of three variables and f has continuous second
partial derivatives, then fiy = fyo , foz = f2e and fy. = f2y .

f and 1
0zdy 0yox

Example 1: Let f(z,y) = 23y + zy?sin(z + ) , calculate

Solution :
fr = 32%y +y?sin(z + y) + 29 cos(z + y)
fy = 2%+ 2zysin(z + y) + zy? cos(x + y)
Jay = 322 + 2y sin(z +y) + y? cos(z + y) + 2xy cos(z + y) — zy? sin(z + y)
fye = 322 + 2y sin(z + y) + 22y cos(z + y) + y* cos(x +y) — zy? sin(z + y)

Note : f., = fy» according to the theorem .

02 f d 0% f

E le 2: Let = z%y? i lculat
xample et f(z,y,2) a:yz+xysm(y+z),cacuaeayam and -

Solution :
fr = 32%y%2 + ysin(y + 2)

[z =2*y* + zycos(y + 2)

2
8?;6]; = foy = 62%yz + sin(y + z) 4+ y cos(y + 2)
0°f = foe = 32%y% + ycos(y + 2)
0xdz 7"
2 2 2
Example 3: Let f(z,y,2) = 223—3(2?+y?)z , Show that %Jrg—szrgz‘g =0
Solution :

fo=0—3z(22) = —6zz
fy =0—32(2y) = —6y=

f. =622 —=3(2% +9?)

82 f

81'2 - fza: - _6Z
2

. = —62

==
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2f

022
o v
ox2 = 0y 022
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6.3 Chain Rules

Theorem (Chain Rules):

1. If w = f(z,y) and x = g(t) , y = h(t) , such that f , g and h are
differentiable then

df dw 0w dr Ow dy

dt — dt Oz dt Oy dt

2. f w= f(z,y) and = = g(t,s) , y = h(t,s) , such that f , g and h are
differentiable then

o5 _ou_ow 0o du 0y
o ot ox ot 0Oy Ot
of 0w _owor 0wy
ds 0s Or O0s Oy Os
3. fw= f(x,y,2) and z = g(¢,s) , y = h(t,s) , z = k(t,s) such that f , g,
h and k are differentiable then

ow Ow Ox aﬂ@ Biw(?z

D or ot oy ot o ot
ow Ow O 87w8y aﬂaz

9s 0z 0s "oy 05 9z 0s

0
Example 1 : Let f(z,y) = zy+y*, 2 = s* , and y = s + ¢ , calculate a—];
of
d —.
and —
Solution :

of Of ox _9f dy

" 0s  Ox 0s Oy Os
g_ or

= 7:2
or 7 s st
of dy
8—yfz+2y, 8371
of

a5 =Y (2st) + (z +2y)(1) = (s + t)2st + [s°t +2(s + 1)]
= 252t + 25t% + 5%t + 25 + 2t = 352t + 2st? + 25 + 2t
0f _0f 0z 0f By

2, — =

at  Ox Ot Oy Ot
of _ . 0r _ o

ar V0 ot

of oy
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of _
ot~ U°

=%+ 2t + 52t + 25+ 2t = 5% + 252t + 25 + 2t

2 (z42y)(1) = (s +1)s* + 5%t +2(s + 1)

Example 2 : Let f(z,y,2) = « + sin(zy) + cos(zz) , x =ts , y = s+ ¢ and

s of
= - lculate —— and — .
z , calculate == and —

Solution :

of _of or  of oy of o

" ds Ox Os Oy ds 0z Os
of Ox

o 1+ ycos(zy) — zsin(zz) , 5 = t

of _ 9y _

- z cos(zy) , 55 1

OF __\intamy 221

9. O s T

of . 1 :

Bs = t [1+ycos(zy) — zsin(xz)] + x cos(zy) + n (—xsin(zz))
s

g =t + ty cos(zy) — tzsin(xz) + x cos(zy) — w
s

o _0f 0z 0f Oy 0f 0:

9. L =2 L 2L
ot —ox ot oy ot oz ot
of . Oz
e 1+ ycos(zy) — zsin(zz) , Friak
of _ % _
- x cos(zy) , 5 = 1
o _ (22) 9z _ —s
5, = —esin(@z) , oo = o
of . - :
Friak [1+4 ycos(zy) — zsin(xz)] + x cos(xy) + = (—xsin(z2))
% = s+ sy cos(xy) — szsin(zz) + x cos(zy) + %r;(xz)
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6.4 Implicit differentiation

1. Suppose that the equation F(x,y) = 0 defines y implicitly as a function
of z say y = f(z) , then
dy _ F,

dx F,

2. Suppose that the equation F(z,y,z) = 0 implicitly defines a function
z = f(z,y) , where f is differentiable , then

%——&and%——Fy
dr  F, oy  F.

d
Example 1 : Let y?> — 2y + 322 = 0, find d—y
x
Solution 1: Let F(z,y) = 2% — 2y + 322 then F(x,y) =0

Fp=—-y+6zxand F, =2y —z .
dy  Fp  (-y+6r) y—6a

dr  F, 2y—x  2w—ax

Solution 2 : 32 — zy + 322 =0
Differentiate both sides implicitly
20y — (y+ay) +62=0 = 2yy —y—ay +6x=0
= 2uy —zy =y—6z = (Qy—2a)y =y—6z

dy , y—6x
dm_y

:2y—z

0z

0
Example 2 : Let F(z,y,2) = 2%y + 2% + sin(zyz) = 0, find a—z and 9
Solution :

F, = 2zy + yz cos(zyz)
F, = 22 + zz cos(zyz)
F, =2z 4 zycos(zyz)

0z F,  2zy+yzcos(ryz)

oz F,  2z+zycos(zyz)

0z F,  2?+zzcos(wyz)

dy  F.  2z+xycos(zyz)
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