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6.1 Functions of several variables

6.1.1 Functions of two variables :
Definition: A function of two variables is a rule that assigns an ordered pair
(x, y) (in the domain of the function) to a real number w.

f : R2
−→ R

(x, y) −→ w

Example :

f(x, y) =
y

x2 + y2
is a function of two variables x and y

f(3, 1) =
1

32 + 12
=

1

10
.

Note that f(x, y) takes (3, 1) ∈ R
2 to

1

10
∈ R

6.1.2 Functions of three variables :
Definition: A function of three variables is a rule that assigns an ordered triple
(x, y, z) (in the domain of the function) to a real number w .

f : R3
−→ R

(x, y, z) −→ w

Example :

f(x, y, z) =
z

x+ y2 + 3
is a function of three variables x , y and z

f(1,−2, 4) =
4

1 + (−2)2 + 3
=

4

8
=

1

2
.

Note that f(x, y, z) takes (1,−2, 4) ∈ R
3 to

1

2
∈ R
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6.2 Partial derivatives

6.2.1 Partial derivatives of a function of two variables :
If w = f(x, y) is a function of two variables, then :

1. The partial derivative of f with respect to x is denoted by
∂f

∂x
,
∂w

∂x
, fx

or wx , and it is calculated by applying the rules of differentiation to x

and regarding y as a constant .

2. The partial derivative of f with respect to y is denoted by
∂f

∂y
,
∂w

∂y
, fy

or wy , and it is calculated by applying the rules of differentiation to y

and regarding x as a constant .

Example 1: Calculate fx and fy of the functiuon f(x, y) = x2y3+xy ln(x+ y)
Solution:

1. fx =
∂

∂x

(

x2y3 + xy ln(x+ y)
)

fx = (2x)y3 +

[

(1)y ln(x+ y) + xy
1

x+ y

]

= 2xy3 + y ln(x+ y) +
xy

x+ y

2. fy =
∂

∂y

(

x2y3 + xy ln(x+ y)
)

fy = x2(3y2) +

[

x(1) ln(x+ y) + xy
1

x+ y

]

= 3x2y2 + x ln(x+ y) +
xy

x+ y

Example 2: Calculate fx and fy of the functiuon f(x, y) =
x+ y2

x+ y
Solution:

1. fx =
∂f

∂x
=

(1 + 0)(x+ y)− (x+ y2)(1 + 0)

(x+ y)2
=

x+ y − (x+ y2)

(x+ y2)

fx =
x+ y − x− y2

(x+ y)2
=

y − y2

(x+ y)2

2. fy =
∂f

∂y
=

(0 + 2y)(x+ y)− (x+ y2)(0 + 1)

(x+ y)2
=

2y(x+ y)− (x+ y2)

(x+ y)2

fy =
2xy + 2y2 − x− y2

(x+ y)2
=

2xy − x+ y2

(x+ y)2
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6.2.2 Partial derivatives of a function of three variables :
If w = f(x, y, z) is a function of three variables, then :

1. The partial derivative of f with respect to x is denoted by
∂f

∂x
,
∂w

∂x
, fx

or wx , and it is calculated by applying the rules of differentiation to x

and regarding y and z as constants .

2. The partial derivative of f with respect to y is denoted by
∂f

∂y
,
∂w

∂y
, fy

or wy , and it is calculated by applying the rules of differentiation to y

and regarding x and z as constants .

3. The partial derivative of f with respect to z is denoted by
∂f

∂z
,
∂w

∂z
, fz

or wz , and it is calculated by applying the rules of differentiation to z

and regarding x and y as constants .

Example : If f(x, y, z) = 2z3x− 4(x2 + y2)z , then calculate fx , fy and fz at
(0, 1, 2).
Solution :

1. fx =
∂

∂x

(

2z3x− 4(x2 + y2)z
)

= 2z3 − 4(2x)z = 2z3 − 8xz

fx(0, 1, 2) = 2 (23)− 8(0)(2) = 16

2. fy =
∂

∂y

(

2z3x− 4(x2 + y2)z
)

= 0− 4(0 + 2y)z = −8yz

fy(0, 1, 2) = −8(1)(2) = −16

3. fz =
∂

∂z

(

2z3x− 4(x2 + y2)z
)

= 6z2x− 4(x2 + y2)

fz(0, 1, 2) = 6(22)(0)− 4(02 + 12) = −4

6.2.3 Second partial derivatives :
If w = f(x, y) is a function of two variables , then :

1.
∂2f

∂x2
=

∂

∂x

(

∂f

∂x

)

=
∂

∂x
(fx) = fxx .

2.
∂2f

∂y2
=

∂

∂y

(

∂f

∂y

)

=
∂

∂y
(fy) = fyy .

3.
∂2f

∂x∂y
=

∂

∂x

(

∂f

∂y

)

=
∂

∂x
(fy) = fyx .

4.
∂2f

∂y∂x
=

∂

∂y

(

∂f

∂x

)

=
∂

∂y
(fx) = fxy .
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Note : Second partial derivatives of a function of three variables are defined in
a same manner.

Theorem : Let f(x, y) be a function of two variables. If f , fx , fy , fxy and
fyx are continuous, then fxy = fyx.

Note : If f(x, y, z) is a function of three variables and f has continuous second
partial derivatives, then fxy = fyx , fxz = fzx and fyz = fzy .

Example 1: Let f(x, y) = x3y + xy2 sin(x+ y) , calculate
∂2f

∂x∂y
and

∂2f

∂y∂x
Solution :

fx = 3x2y + y2 sin(x+ y) + xy2 cos(x+ y)

fy = x3 + 2xy sin(x+ y) + xy2 cos(x+ y)

fxy = 3x2 +2y sin(x+ y) + y2 cos(x+ y) + 2xy cos(x+ y)− xy2 sin(x+ y)

fyx = 3x2 +2y sin(x+ y) + 2xy cos(x+ y) + y2 cos(x+ y)− xy2 sin(x+ y)

Note : fxy = fyx according to the theorem .

Example 2: Let f(x, y, z) = x3y2z + xy sin(y+ z) , calculate
∂2f

∂y∂x
and

∂2f

∂x∂z
Solution :

fx = 3x2y2z + y sin(y + z)

fz = x3y2 + xy cos(y + z)

∂2f

∂y∂x
= fxy = 6x2yz + sin(y + z) + y cos(y + z)

∂2f

∂x∂z
= fzx = 3x2y2 + y cos(y + z)

Example 3: Let f(x, y, z) = 2z3−3(x2+y2)z , Show that
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
= 0

Solution :

fx = 0− 3z(2x) = −6xz

fy = 0− 3z(2y) = −6yz

fz = 6z2 − 3(x2 + y2)

∂2f

∂x2
= fxx = −6z

∂2f

∂y2
= fyy = −6z
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∂2f

∂z2
= fzz = 12z

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= −6z − 6z + 12z = 0
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6.3 Chain Rules

Theorem (Chain Rules):

1. If w = f(x, y) and x = g(t) , y = h(t) , such that f , g and h are
differentiable then

df

dt
=

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt

2. If w = f(x, y) and x = g(t, s) , y = h(t, s) , such that f , g and h are
differentiable then

∂f

∂t
=

∂w

∂t
=

∂w

∂x

∂x

∂t
+

∂w

∂y

∂y

∂t

∂f

∂s
=

∂w

∂s
=

∂w

∂x

∂x

∂s
+

∂w

∂y

∂y

∂s

3. If w = f(x, y, z) and x = g(t, s) , y = h(t, s) , z = k(t, s) such that f , g ,
h and k are differentiable then

∂w

∂t
=

∂w

∂x

∂x

∂t
+

∂w

∂y

∂y

∂t
+

∂w

∂z

∂z

∂t

∂w

∂s
=

∂w

∂x

∂x

∂s
+

∂w

∂y

∂y

∂s
+

∂w

∂z

∂z

∂s

Example 1 : Let f(x, y) = xy + y2 , x = s2t , and y = s + t , calculate
∂f

∂s

and
∂f

∂t
.

Solution :

1.
∂f

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s

∂f

∂x
= y ,

∂x

∂s
= 2st

∂f

∂y
= x+ 2y ,

∂y

∂s
= 1

∂f

∂s
= y (2st) + (x+ 2y)(1) = (s+ t)2st+

[

s2t+ 2(s+ t)
]

= 2s2t+ 2st2 + s2t+ 2s+ 2t = 3s2t+ 2st2 + 2s+ 2t

2.
∂f

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t

∂f

∂x
= y ,

∂x

∂t
= s2

∂f

∂y
= x+ 2y ,

∂y

∂t
= 1
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∂f

∂t
= ys2 + (x+ 2y)(1) = (s+ t)s2 + s2t+ 2(s+ t)

= s3 + s2t+ s2t+ 2s+ 2t = s3 + 2s2t+ 2s+ 2t

Example 2 : Let f(x, y, z) = x + sin(xy) + cos(xz) , x = ts , y = s + t and

z =
s

t
, calculate

∂f

∂s
and

∂f

∂t
.

Solution :

1.
∂f

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
+

∂f

∂z

∂z

∂s

∂f

∂x
= 1 + y cos(xy)− z sin(xz) ,

∂x

∂s
= t

∂f

∂y
= x cos(xy) ,

∂y

∂s
= 1

∂f

∂z
= −x sin(xz) ,

∂z

∂s
=

1

t

∂f

∂s
= t [1 + y cos(xy)− z sin(xz)] + x cos(xy) +

(

1

t

)

(−x sin(xz))

∂f

∂s
= t+ ty cos(xy)− tz sin(xz) + x cos(xy)−

x sin(xz)

t

2.
∂f

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
+

∂f

∂z

∂z

∂t

∂f

∂x
= 1 + y cos(xy)− z sin(xz) ,

∂x

∂t
= s

∂f

∂y
= x cos(xy) ,

∂y

∂t
= 1

∂f

∂z
= −x sin(xz) ,

∂z

∂t
=

−s

t2

∂f

∂t
= s [1 + y cos(xy)− z sin(xz)] + x cos(xy) +

(

−s

t2

)

(−x sin(xz))

∂f

∂t
= s+ sy cos(xy)− sz sin(xz) + x cos(xy) +

sx sin(xz)

t2
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6.4 Implicit differentiation

1. Suppose that the equation F (x, y) = 0 defines y implicitly as a function
of x say y = f(x) , then

dy

dx
= −

Fx

Fy

2. Suppose that the equation F (x, y, z) = 0 implicitly defines a function
z = f(x, y) , where f is differentiable , then

∂z

∂x
= −

Fx

Fz

and
∂z

∂y
= −

Fy

Fz

Example 1 : Let y2 − xy + 3x2 = 0 , find
dy

dx
.

Solution 1: Let F (x, y) = x2
− xy + 3x2 then F (x, y) = 0

Fx = −y + 6x and Fy = 2y − x .

dy

dx
= −

Fx

Fy

= −
(−y + 6x)

2y − x
=

y − 6x

2y − x
.

Solution 2 : y2 − xy + 3x2 = 0

Differentiate both sides implicitly

2yy′ − (y + xy′) + 6x = 0 ⇒ 2yy′ − y − xy′ + 6x = 0

⇒ 2yy′ − xy′ = y − 6x ⇒ (2y − x)y′ = y − 6x

⇒
dy

dx
= y′ =

y − 6x

2y − x

Example 2 : Let F (x, y, z) = x2y + z2 + sin(xyz) = 0 , find
∂z

∂x
and

∂z

∂y
.

Solution :

Fx = 2xy + yz cos(xyz)

Fy = x2 + xz cos(xyz)

Fz = 2z + xy cos(xyz)

∂z

∂x
= −

Fx

Fz

= −
2xy + yz cos(xyz)

2z + xy cos(xyz)

∂z

∂y
= −

Fy

Fz

= −
x2 + xz cos(xyz)

2z + xy cos(xyz)
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