

Balanced Incomplete Block Design

BIBD

Randomized Incomplete Block Design

These are randomized block designs in which every treatment is not present in every block.

BIBD Mode Adequacy The experimenter is not be able to run all the treatment combinations in each block because:

- > Shortages of Experimental Apparatus or Facilities
- > The Physical Size of the Block

Example

Balanced Incomplete Block Design (BIBD)

An incomplete block design in which any two treatments appear together an equal number of times. This happens when all treatment comparisons are equally important and the treatment combinations used in each block should be selected in a balanced manner.

Balanced Incomplete Block Design

BIBD

Suppose that there are **a** treatments and that each block can hold exactly **k** where (k < a) treatments. A balanced incomplete block design may be constructed by taking binomial coefficient of a and k blocks and assigning a different combination of treatments to each block.

BIBD Mode Adequacy Assume that there are **a** treatments and **b** blocks. In addition, assume that each block contains **k** treatments, that each treatment occurs **r** times in the design (or is replicated r times), and that there are N = a r = bk total observations. Furthermore, the number of times each pair of treatments appears in the same block is

$$\lambda = \frac{r(k-1)}{a-1}$$

Example

If $\mathbf{a} = \mathbf{b}$, the design is said to be **symmetric**.

Balanced Incomplete Block Design

The statistical model for the BIBD

BIBD

 $y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij}$

where y_{ij} is the *i*th observation in the *j*th block, μ is the overall mean, τ_i is the effect of the *i*th treatment, β_j is the effect of the *j*th block, and ϵ_{ij} is the NID (0, σ^2) random error

The BIBD ANOVA Table

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F ₀
Treatments (adjusted)	$\frac{k\sum Q_i^2}{\lambda a}$	<i>a</i> – 1	$\frac{SS_{\text{Treatments}(adjusted)}}{a-1}$	$F_0 = \frac{MS_{\text{Treatments(adjusted)}}}{MS_E}$
Blocks	$rac{1}{k}\sum y_{.j}^2 - rac{y_{}^2}{N}$	b-1	$\frac{SS_{ m Blocks}}{b-1}$	
Error	SS_E (by subtraction)	N-a-b+1	$\frac{SS_E}{N-a-b+1}$	
Total	$\sum \sum y_{ij}^2 - \frac{y_{}^2}{N}$	N-1		

Balanced Incomplete Block Design

$$SS_T = \sum_i \sum_j y_{ij}^2 - \frac{y_{..}^2}{N}$$

$$SS_T = SS_{\text{Treatments(adjusted)}} + SS_{\text{Blocks}} + SS_E$$

$$SS_{\text{Blocks}} = \frac{1}{k} \sum_{j=1}^{b} y_{,j}^{2} - \frac{y_{,i}^{2}}{N}$$
$$SS_{\text{Treatments(adjusted)}} = \frac{k \sum_{i=1}^{a} Q_{i}^{2}}{\lambda a}$$

Example

BIBD

$$Q_i = y_{i.} - \frac{1}{k} \sum_{j=1}^{b} n_{ij} y_{.j}$$
 $i = 1, 2, ..., a$

Rejection Criteria

 $F_0 > F_{a,(a-1),(N-a-b+1)}$

College of Engineering Industrial Engineering

BIBD Model Adequacy

BIBD

BIBD Model Adequacy

Example

A chemical engineer thinks that the time of reaction for a chemical process is a function of the type of catalyst employed. Four catalysts are currently being investigated. The experimental procedure consists of selecting a batch of raw material, loading the pilot plant, applying each catalyst in a separate run of the pilot plant, and observing the reaction time. Because variations in the batches of raw material may affect the performance of the catalysts, the engineer decides to use batches of raw material as blocks. However, each batch is only large enough to permit three catalysts to be run. Therefore, a randomized incomplete block design must be used. The balanced incomplete block design for this experiment, along with the observations recorded in the following table.

Teratment	Blo	Block (Batch of Raw Material)				
(Catalyst)	1	2	3	4	<i>yi</i> .	
1	73	74		71	218	
2		75	67	72	214	
3	73	75	68		216	
4	75	—	72	75	222	
<i>У.</i> ј	221	224	207	218	$870 = y_{5}$	

BIBD Model Adequacy

BIBD

$$SS_T = \sum_i \sum_j y_{ij}^2 - \frac{y_{..}^2}{12}$$

= 63,156 - $\frac{(870)^2}{12}$ = 81.00

 $a = 4, b = 4, k = 3, \lambda = 2: N = 12$

BIBD Mode Adequacy

$$SS_{\text{Blocks}} = \frac{1}{3} \sum_{j=1}^{4} y_{,j}^2 - \frac{y_{,i}^2}{12}$$
$$= \frac{1}{3} \left[(221)^2 + (207)^2 + (224)^2 + (218)^2 \right] - \frac{(870)^2}{12} = 55.00$$

$$Q_1 = (218) - \frac{1}{3}(221 + 224 + 218) = -9/3$$

$$Q_2 = (214) - \frac{1}{3}(207 + 224 + 218) = -7/3$$

$$Q_3 = (216) - \frac{1}{3}(221 + 207 + 224) = -4/3$$

$$Q_4 = (222) - \frac{1}{3}(221 + 207 + 218) = 20/3$$

BIBD Model Adequacy

BIBD

BIBD Mode Adequacy

Example

SS _{Treatments(adjusted)}	ли	$(3)^2 + (-7/3)^2$	+ (-4/3))(4)	² + (20/3)	$\frac{)^2]}{2} = 22.75$
		$(adjusted) - SS_{Block}$ 55.00 = 3.25			
Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F ₀	P-Value
Treatments (adjusted for blocks)	22.75	3	7.58	11.66	0.0107
Blocks	55.00	3	_		
Error	3.25	5	0.65		
Total	81.00	11			

 $F_{\alpha,(a-1),(N-a-b+1)} = F_{0.05,3,5} = 5.41$

BIBD Model Adequacy

orksheet 1 ***]

BIBD

BIBD Model Adequacy

> Mir	nitab - BIBD.N	MPJ - [Worksheet 1 ***]		
E 1	ile <u>E</u> dit D	<u>a</u> ta <u>C</u> alc <u>S</u> tat <u>G</u> raph E <u>d</u>	itor <u>T</u> ools <u>W</u> ind	ow <u>H</u> elp
🗃 I	🖬 🎒 🐰	, 🗈 💼 🖂 🖂 🛄 🕇	I 🗛 🔐 🛇	🤋 🗊
		8 2 4 0] ک _× ٹ _× ا کپ
			¤ ≠	-
] k '	TOOY	< ° ⊔ ⊔		
+	C1	C2	C3	C4
	Catalyst	Batch of Raw Materials	Reaction Time	
1	1	1	73	
2	1	2	74	
3	1	3	*	
4	1	4	71	
5	2	1	*	
6	2	2	75	
7	2	3	67	
8	2	4	72	
9	3	1	73	
10	3	2	75	
11	3	3	68	
12	3	4	*	
13	4	1	75	
14	4	2	*	
15	4	3	72	<u> </u>
16	4	4	75	
17				

[<u>S</u> tat <u>G</u> raph E <u>d</u> itor <u>T</u>	ools <u>W</u> indow <u>H</u> elp	
Ī	Basic Statistics	• 🛇 🤋 🗊	
Ţ	<u>R</u> egression	• Ia s Ia s Ia s [@2,@5]	
- 	<u>A</u> NOVA	▶ <u>O</u> ne-Way	
_	DOE	 A One-Way (Unstacked) 	
1	Control Charts	• <u>T</u> wo-Way	
	Quality Tools	Analysis of Means 6	
D	Reliability/Survival	A0V Balanced ANOVA	
	<u>M</u> ultivariate	GLM General Linear Model	
	Time <u>S</u> eries	[] <u>Fully Nested ANOVA</u>	
	<u>T</u> ables	Balanced MANOVA	
	<u>N</u> onparametrics	GLM General MANOVA	
	<u>E</u> DA		
	<u>P</u> ower and Sample Si		
	3	III Interval Plot	
	4	Main Effects Plot	
	1	Interactions Plot	
	2	75	
			2
	General Linear Model		2
	C1 Catalyst	Responses: Catalyst	
	C2 Batch of Raw Ma C3 Reaction Time	Model:	
		'Batch of Raw Materials' 'Reaction Time'	
		Random factors:	
		* *	
		1	
		Covariates Options Comparisons	P.
	,	Graphs Results Storage	
	Select	Factor Plots	
	Help	OK Cancel	

General Linear Model: Reaction Time versus Catalyst, Batch of Raw Mat

Factor	Type	Levels	Va.	lue	3	
Catalyst	fixed	4	1,	2,	з,	4
Batch of Raw Materials	fixed	4	1,	2,	з,	4

Analysis of Variance for Reaction Time, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Catalyst	3	11.667	22.750	7.583	11.67	0.011
Batch of Raw Materials	3	66.083	66.083	22.028	33.89	0.001
Error	5	3.250	3.250	0.650		
Total	11	81.000				

Example

9

BIBD Model Adequacy

An engineer is studying the mileage performance characteristics of five types of gasoline additives. In the road test he wishes to use cars as blocks; however, because of a time constraint, he must use an incomplete block design. He runs the balanced design with the five blocks that follow. Analyze the data from this experiment (use α = 0.05) and draw conclusions

			Car		
Additive	1	2	3	4	5
1		17	14	13	12
2	14	14		13	10
3	12		13	12	9
4	13	11	11	12	
5	11	12	10		8

BIBD Model Adequacy

BIBD Model Adequacy

$a = 5, b = 5, k = 4, \lambda = 3: N = 20$

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
Treatments (adjusted)	$\frac{k\sum Q_i^2}{\lambda a}$	a - 1	$\frac{SS_{\text{Treatments}(adjusted)}}{a-1}$	$F_0 = \frac{MS_{\text{Treatments(adjusted)}}}{MS_E}$
Blocks	$rac{1}{k}\sum y_{.j}^2 - rac{y_{}^2}{N}$	b-1	$\frac{SS_{ m Blocks}}{b-1}$	
Error	SS_E (by subtraction)	N-a-b+1	$\frac{SS_E}{N-a-b+1}$	
Total	$\sum \sum y_{ij}^2 - \frac{y_{}^2}{N}$	N-1		

BIBD Model Adequacy

BIBD

General Linear Model: Milage Performance versus Additive, Car

Factor	Type	Levels	Values				
Additive	fixed	5	1,	2,	з,	4,	5
Car	fixed	5	1,	2,	з,	4,	5

Analysis of Variance for Milage Performance, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Additive	4	31.7000	35.7333	8.9333	9.81	0.001
Car	4	35.2333	35.2333	8.8083	9.67	0.001
Error	11	10.0167	10.0167	0.9106		
Total	19	76.9500				

S = 0.954257 R-Sq = 86.98% R-Sq(adj) = 77.52%

Unusual Observations for Milage Performance

Milage Obs Performance Fit SE Fit Residual St Resid 17 11.0000 12.5167 0.6401 -1.5167 -2.14 R

R denotes an observation with a large standardized residual.

 $F_{a,(a-1),(N-a-b+1)} = F_{0.05,4,11} = 3.36$

Adequacy