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UNIT 5
EQUATIONS 

OF STATE

EQUATIONS 

OF STATE

معادلات الحالة
•Aggregate state of matter may
be found, in one of the
following forms:

gaseous, liquid or solid states.



1/22/2020

2

•The gaseous state is simpler than
either solid or liquid states and
gives a convenient introduction to
the study of the matter.

Gases is differing from liquids
and solids in several aspects:

 A gas expands to fill its container.

Volumes of solid and liquid are not
determined by the container.

 When pressure is applied to a gas,
its volume readily contracts. Liquids
and solids are not very compressible.

 Two or more gases form homogeneous
mixtures in all proportions. Liquids often
do not form homogeneous mixtures.

 The characteristic properties of gases
arise because the individual molecules
of a gas are relatively far apart.

In a liquid, the individual molecules
are close together and are constantly
in contact with neighbors and perform
attractive forces for one another
keeping them together.

When a pair of molecules come close
together, repulsive forces prevent any
closer approach.
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 Gas molecules are in constant
motion, and they frequently collide and
they remain fairly far apart.

Each molecule tends to behave as
though the others weren't there.

 Therefore, the gaseous state is
simpler than either solid or liquid states
and gives a convenient introduction to
the study of the matter. Gases, differing
from liquid and solids, occupy volumes
that affected to a very great extent by
changes in temperature and pressure.

•The quantitative functional relations
between the properties of a system
(phase) can be described by various
kinds of equations.
•Among such equations the
equation of state of a phase. This
equation relates, in general form,
the pressure, temperature, density
(or volume), composition and other
properties of each phase of a
system in equilibrium, which may
be written as:

V= f(T,P,n)            (1.1)
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1.1 The State Equation of Ideal Gas

The concept of an ideal gas has
been explained through the
assumptions of the kinetic theory
of gases to include:

1. A gas consists of a very large
number of molecules which are in a
state of continual random motion.

2. A molecule has a negligible size.

3. The pressure of a gas is a
consequence of the force on a
measuring object, such as the
container, of molecular collisions.

5. No forces are exerted between
molecules except through collisions.
Therefore between collisions, a
molecule travels in a straight line at a
constant speed.

4. Collisions between molecules or
between a molecule and an inert
surface are perfectly elastic, with no
change in the total kinetic energy
of the gas molecules.

6. The average kinetic energy per gas
molecule independent of the nature
of the gas and is directly proportional
to the absolute temperature.
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P V=n R T (1.2)

Based on the above assumptions, the simplest
equation of state for an ideal gas have been
predicted, taking the following form:

P: is the pressure of the gas.
V: its volume. 
T: its absolute temperature.
n: number of moles.

in which:

where:
n=m/M )mass of gas/its molecular mass)

R: is called the universal gas constant.

The universal gas constant has

different values according to the units
of the other parameters. Its different
values may be found as follows:
Referring to Avogadro's Law, which

states that:- .
The volume occupied by one mole of
any gas at standard temperature and
pressure ,(S.T.P), equals to 22.41 L

R = P V / nT
R= 0.08208  (atm. lit)/( K. mole)

R= 8.314 joule / K mole

R= 1.98 calorie/ K mole
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Solution:  

Example (1.1)
A 0.02 m3 vessel contains 35 gm of
nitrogen gas at a pressure of 1140 mm. Hg.

What is the temperature of the gas?.

Applying the ideal gas equation (1.2)           
PV = nRT

Where: 

P = (1140) / (760) = 1.5 atm
V = (0.02) (1000) =  20 liters
n = m/Mw=35/ 28 = 1.25 moles
R = 0.08208 atm.  lit / K mole

T = (1.5) (20) / (1.25)(0.08208)=    
292.4 K = 19.4 oC

Solution:  

Example (1.2)
Calculate the density of CO2 gas at a
pressure of 760 mm.Hg and at a
temperature of 27 oC.

P V  =  n R T,    putting    n = m / Mw

= PMw/RT …. (1.3)
P = 760 / 760  = 1  atm.

MCO2= 44 gm/mole

T    =     27  +  273  =   300 K

R    =   0.08208   atm.lit /  K mole

= (1)(44) / (300)(0.08208)

= 1.7869  gm/ lit.
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1.2 State Equation of Ideal Gas for
Gas Mixture: .
The partial pressure of any
component in a gas mixture, is the
pressure that the component would
exert if it was alone occupying the
entire volume of the gas mixture at
the same temperature.
Dalton's law of partial pressures
relates the total pressure exerted by a
gas mixture with the partial pressures
of the individual components.

4)-(1
i

N

1=iT
P=P ..........∑

The pure component volume of a
component gas in a mixture of
gases is defined as the volume
which would be occupied by that
component gas if it was present,
alone, at the same temperature and
pressure as the original mixture.

Amagates Law relates the total
volume of the mixture or gases to the
partial volume of each component.

5)-(1
i

N

1=iT
V=V ..........∑



1/22/2020

8

The ideal gas equation can be
applied to each component
individually as follows:
For the first component P1V=n1RT

and so on   .......  

For the second component P2V=n2RT

For N component PNV=nNRT

For the third component P3V=n3RT

(P1+P2+P3+..+PN)V=(n1+n2+n3+..+nN)RT

or                   PT V  = nT R T
We divide its specific ideal gas
equation by the ideal gas equation of
the whole mixture:

pi/PT=ni/nT=yi

Example (1.3)

Solution
Consider that we have 100 gm of air, then:

Calculate the partial pressure of oxygen, O2, in a
sample of air whose composition as weight
percentage is given as: CO2=0.04% , O2=22.83,
N2=75.33% and H2O=1.8%. If the pressure
of air is given as 760 mm Hg.

nCO2
=mCO2

/MCO2
=0.04/44=0.00091 mole

Similarly; nO2
= 0.71344 mole

nN2
=2.69036 mole .

nH2O= 0.1 mole
nT = 3.50571 mole

yO2
=nO2

/nT=0.71344/3.50471= 0.203
PO2

=PTyO2
= 154.71 mm.Hg
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The flow rate of air from a commercial

blower is to be determined.

Example (1.4)

The blower delivers dry air at 50 oC

and 750 mm Hg.

10 kg of ammonia per minute is added

to the air, and a sample of the gaseous

mixture indicates 67.1% N2 , 17.9% O2 ,

and 15% NH3 by volume.

Calculate the rate of air delivery by the

blower in cubic meters per minute.

(Dry air can be considered as 21% O2

and 79% N2 by volume).

Solution

Basis: 1 minute 

Number of gm moles of ammonia entering

the mixture=10000/17=588.235 mole.

BLOWER

NH3= 10 kg

Air ( N2 & O2)

Mixture of:

N2=67.1%

O2=17.9%

NH3=15%

Let x to be the total mole of O2 , N2 and NH3

in the mixture; then by material balance on NH3:

0.15 x = 588.235   x = 3921.5 mole
n air=3921.5-588.5=3333.332 mole.

P V=n R T  Vair =89551.259 L/min

= 588.235 mole
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N2O4 partially dissociated according to the
following equation: N2O4  2 N O2

Basis: 1 mole of N2O4 in the original mixture
before dissociation.

Example (1.5)

If it is found that 24 gm of a gaseous
mixture containing N2O4 and NO2 occupies
a volume of 15000 cm3 at 363 K and 97.3
KPa pressure. Calculate the percentage
dissociation of N2O4 to NO2.

Solution

Let x be the fraction dissociated of N2O4
Moles of N2O4 remaining =1 - x
Moles of NO2 formed = 2 x
Total moles = (1-x)+ 2x = 1 + x
y N2O4 = (1-x ) / (1+ x )

Now we have 24 gm of the mixture at a
pressure of 97.3 KPa = 97300/101325
= 0.9603 atm. and occupies a volume of
15 liters at a temperature of 363 K.

From P V=n R T n= 0.48345  moles.

Average molecular weight of the gas
mixture Mav=m/n =49.6432 gm/mole

But Mav = y1M1 + y2M2

92 y1 + 46 y2 = 49.6432 and
y1 + y2 = 1

Solving the last two equations
y1= yN2O4 = 0.0792= (1-x)/1+x)

x=0.8532  % dissociation of N2O4= 85.32%
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1.3 The State Equation of Real Gas

The fact that all gases can be
liquefied if they are compressed and
cooled sufficiently is an indication
that all gases become non ideal at
high pressures and low temperatures.

For one mole of gas, n=1; the quantity
(PV/RT) should therefore equal 1 if
the gas is ideal.
Figure (1.1) shows the quantity
(PV/RT) plotted as a function of
pressure for a few gaseous substances
compared with the expected behavior
of an ideal gas.
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Z is the ratio of the “real molar volume” 
over the “ideal molar volume” 
of a substance measured at the same 

pressure and temperature.
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However, the pressures shown are
very high; at more ordinary pressures,
below 10 atm, the deviations from
ideal behavior are not so large, and
the ideal-gas equation can be used
without serious error.
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Fig. (1.1): PV/RT behavior as function of pressure for N2,
CH4, H2 and CO2 compared with that for ideal gas
behavior.

Real molecules do take up space and do interact

with each other (especially polar molecules).

Need to add correction factors to the ideal gas 

law to account for these.

Real Gases
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Ideally, the VOLUME of the molecules was neglected:

at  1 Atmosphere Pressure

at  10 Atmospheres Pressure

at  30 Atmospheres Pressure 

Ar gas, ~to scale, in a box 3nm x 3nm x3nm

 The actual volume free to move in is less

because of particle size.

 More molecules will have more effect.

 Corrected volume  V’ = V – nb

 “b” is a constant that differs for each gas.

Volume Correction

But since real gases do have volume, we need:
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Because the molecules are 

attracted to each other, the 

pressure on the container will be 

less than ideal.

Pressure depends on the 

number of molecules per liter.

Since two molecules interact, 

the effect must be squared.

Pressure Correction

2

observed )
V

n
( aPP 

฀

[Pobs  a (
n

V
)2] (Vnb)  nRT

Corrected Pressure Corrected Volume

Van der Waal’s equation

 “a” and “b” are 

determined by experiment

 “a” and “b” are

different for each gas

 bigger molecules have larger “b”
 “a” depends on both 

size and polarity
Johannes Diderik van der Waals

Mathematician & Physicist

Leyden, The Netherlands

November 23, 1837 – March 8, 1923
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Van der Waal’s equation

nRTnb)(V ])
V

n
( ap 2

obs 

V
m

= V /n

Compressibility Factor

The most useful way of 

displaying this new law for 

real molecules is to plot the 

compressibility factor, Z :

For n = 1

Z = PV /  RT

Ideal Gases have Z = 1
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Figure (1.4) shows the (PV/RT) behavior

for CH4 as a function of temperature.

It is obviated that positive departure at

high pressures is larger when the gas is

at lower temperature.
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Fig. (1.4): PV/RT behavior for CH4 as function of temperature. behavior.
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Fig. (1-6) Pressure volume Isotherms of a real gas near critical point.
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1.4 The Reduced Form of Equations of State
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Above critical temperature on the
isotherm, such as curve 1', in Fig.
(1.6), compression changes the system
from a low density state (point A') to
the high-density state (point D')
without phase transition.

The critical data, (Pc ,Vc and Tc), for
a gas are used to obtain the reduced
parameters which are included in
the reduced equation of state as will
be presented in the following
discussion:

 The constants (a & b) of the
van der Waals equation are related to
the critical values of the volume,
pressure and temperature.

V3-(b+RT/P)V2+(a/P)V-(ab/P)=0

In order to establish this relationship,
let us rewrite Eqn. (1.7) in the form of
a cubic equation :

or in the binomial form:

(V-V1) (V-V2) (V-V3)=0
Where V1, V2 and V3 are the three roots of the cubic Eqn. (1.9).

At the critical point V1 = V2 = V3 = Vc

 (V-Vc)
3=0  V3-3(Vc)V2+ 3(Vc)

2 V- (Vc)
3=0
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Substituting the critical values Pc and Tc, into
Eqn. (1.9) instead of P and T, it becomes:

V3-(b+RTc/Pc)V2+(a/Pc)V-(ab/Pc)=0

V3-(b+RT/P)V2+(a/P)V-(ab/P)=0
Now, comparing the coefficients of the last two equations

3Vc=b+RTc/Pc, 3(Vc)
2=a/P, (Vc)

3=ab/Pc

a=3Pc(Vc)
2, b=(1/3)Vc, R=(8/3)PcVc/Tc

Substituting with the values of both a, b

and R  [P+(3PcVc
2/V2)](V-Vc/3)

=(8/3)(PcVc/Tc)]T,
dividing both sides of this equation by ( PcVc ) and multiplying by3

[(P/Pc)+3(Vc/V)2][3(V/Vc)-1]=8(T/Tc)
(Pr+3/Vr

2)(3Vr-1)=8Tr

which called reduced form

Example (1.7)
Calculate the molar volume of oxygen, O2, at a
temperature of 27C and pressure of 15 atm.

Solution
(a) Assuming ideal behavior: P V=nRT
V = (1) (0.08206) (300) / (15) = 1.6416 liter.
(b) Assuming real behavior and van der Waals
equation applies: ( P+a /V2)(V-b)=RT
Put van der Waals equation in the following

iterative form: V=[RT/(P+a/V2)]+b
from Appendix (12), for oxygen gas,

a=1.36 atm.lit2/mole2 and b = 0.0318 lit./mole.
Using the volume found via the ideal gas equation V =1.6416 L

V1=[(0.08206)(300)]/[(15)+(1.36)/(1.6416)2]+0.03183 =1.6200 L
V2=[(0.08206)(300)]/[(15)+(1.36)/(1.62)2]+0.03183 =1.6186 L

V3 = 1.61851L and V4 = 1.61851L

(c) Using the generalized compressibility factor, (Z):

Using Appendix (3), Pc = 49.7 atm. , Tc= -118.8 C

Pr=P/Pc =0 .3018 , Tr=T/Tc= 1.9455, and using appendix (5)
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Z= 0.98 and substituting in PV=ZnRT V=1.61 L
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Redlich-Kwong equation of state

Soave modification of Redlich-Kwong
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Peng–Robinson equation of state


