

Example

A vendor submits lots of fabric to a textile manufacturer. The manufacturer wants to know if the lot average breaking strength exceeds 200 psi. If so, she wants to accept the lot. Past experience indicates that a reasonable value for the variance of breaking strength is 100(psi-sq).

Example

Average breaking strength exceeds 200 psi. variance of breaking strength is 100(psi-sq), $\sigma = 10$ $H_0: \mu = 200$ $H_1: \mu > 200$ Table 2-3 Tests on Means with Variance Known Test Statistic Criteria for Rejection Hypothesis $H_0: \mu = \mu_0$ $|Z_0| > Z_{\alpha/2}$ $H_1: \mu \neq \mu_0$ $Z_0 = \frac{\overline{y} - \mu_0}{\sigma / \sqrt{n}}$ $H_0: \mu = \mu_0$ $Z_0 < -Z_\alpha$ H_1 : $\mu < \mu_0$ $H_0: \mu = \mu_0$ $Z_0 > Z_\alpha$ $H_1: \mu > \mu_0$ $H_0: \mu_1 = \mu_2$ $|Z_0| > Z_{\alpha/2}$ $H_1: \mu_1 \neq \mu_2$ $H_0: \mu_1 = \mu_2$ $Z_0 < -Z_\alpha$ $Z_{0} = \frac{\overline{y}_{1} - \overline{y}_{2}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$ $H_1: \mu_1 < \mu_2$ $H_0: \mu_1 = \mu_2$ $Z_0 > Z_\alpha$ $H_1: \mu_1 > \mu_2$

Example

Four specimens are randomly selected, and the average breaking strength observed is $\overline{y} = 214$ psi. The value of the test statistic is

 $Z_0 = \frac{\bar{y} - \mu_0}{\sigma/\sqrt{n}} = \frac{214 - 200}{10/\sqrt{4}} = 2.80$

If a type I error of $\alpha = 0.05$ is specified, we find $Z_{\alpha} = Z_{0.05} = 1.645$ from Appendix Table I. Thus H_0 is rejected, and we conclude that the lot average breaking strength exceeds 200 psi.

	ro rom									
z	.00	.01	.02	.03	.04	Z	z	.05	.06	.07
.0	.50000	.50399	.50798	.51197	.51595	0	.0	.51994	.52392	.52790
.1	.53983	.54379	.54776	.55172	.55567	.1	.1	.55962	.56356	.56749
.2	.57926	.58317	.58706	.59095	.59483	.2	.2	.59871	.60257	.60642
.3	.61791	.62172	.62551	.62930	.63307	.3	.3	.63683	.64058	.64431
.4	.65542	.65910	.66276	.66640	.67003	.4	.4	.67364	.67724	.68082
.5	.69146	.69497	.69847	.70194	.70540	.5	.5	.70884	.71226	.71566
.6	.72575	.72907	.73237	.73565	.73891	.6	.6	.74215	.74537	.74857
.7	.75803	.76115	.76424	.76730	.77035	.7	.7	.77337	.77637	.77935
.8	.78814	.79103	.79389	.79673	.79954	.8	.8	.80234	.80510	.80785
.9	.81594	.81859	.82121	.82381	.82639	.9	.9	.82894	.83147	.83397
1.0	.84134	.84375	.84613	.84849	.85083	10	1.0	.85314	.85543	.85769
1.1	.86433	.86650	.86864	.87076	.87285	1.1	1.1	.87493	.87697	.87900
1.2	.88493	.88686	.88877	.89065	.89251	1.2	1.2	.89435	.89616	.89796
1.3	.90320	.90490	.90658	.90824	.90988	1.3	1.3	.91149	.91308	.91465
1.4	.91924	.92073	.92219	.92364	.92506	1.4	1.4	.92647	.92785	.92922
1.5	.93319	.93448	.93574	.93699	.93822	1.5	1.5	.93943	.90462	.94179
1.6	.94520	.94630	.94738	.94845	.94950	1.6	1.6	.95053	.95154	.95254
1.7	.95543	.95637	.95728	.95818	.95907	1.7	1.7	.95994	.96080	.96164
1.8	.96407	.96485	.96562	.96637	.96711	1.8	1.8	.96784	.96856	.96926
1.9	.97128	.97193	.97257	.97320	.97381	1.9	1.9	.97441	.97500	.97558
		0.000	07011	07007	07032	2.0	2.0	97982	98030	98077

Example

A chemical engineer is investigating the inherent variability of two types of test equipment that can be used to monitor the output of a production process. He suspects that the old equipment, type 1, has a larger variance than the new one.

Example

Exercises

two types of test equipment . He suspects that the old equipment, type 1, <u>has a larger variance</u> than the new one.

$$H_0: \sigma_1^2 = \sigma_2^2$$
$$H_1: \sigma_1^2 > \sigma_2^2$$

Two random samples of $n_1 = 12$ and $n_2 = 10$ observations are taken, and the sample variances are $S_1^2 = 14.5$ and $S_2^2 = 10.8$. The test statistic is

 Table 2-7
 Tests on Variances of Normal Distributions

Hypothesis	Test Statistic	Criteria for Rejection
$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$	$F_0 = \frac{S_1^2}{S_2^2}$	$F_0 > F_{lpha/2, n_1 - 1, n_2 - 1}$ or $F_0 < F_{1 - lpha/2, n_1 - 1, n_2 - 1}$
$H_0: \sigma_1^2 = \sigma_2^2 \ H_1: \sigma_1^2 < \sigma_2^2$	$F_0 = \frac{S_2^2}{S_1^2}$	$F_0 > F_{\alpha, n_2 - 1, n_1 - 1}$
$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 > \sigma_2^2$	$F_0 = \frac{S_1^2}{S_2^2}$	$F_0 > F_{\alpha,n_1-1,n_2-1}$

Example

$$F_0 = \frac{S_1^2}{S_2^2} = \frac{14.5}{10.8} = 1.34$$

Exercises

From Appendix Table IV we find that $F_{0.05,11,9} = 3.10$, so the null hypothesis cannot be rejected. That is, we have found insufficient statistical evidence to conclude that the variance of the old equipment is greater than the variance of the new equipment.

								Degr	ees of Free	dom for the	Numerato	r (v ₁)		
×1	1	2	3	4	5	6	7	8	9	10	12	15	20	24
	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	248.0	249.1
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.4
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.6
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.

IV. Percentage Points of the F Distribution (continued) $F_{0.05}$ w. m

. Twenty observations on etch uniformity on silicon wafers are taken during a qualification experiment for a plasma etcher. The data are as follows:

Exam	pl	e
------	----	---

5.34	6.65	4.76	5.98	7.25
6.00	7.55	5.54	5.62	6.21
5.97	7.35	5.44	4.39	4.98
5.25	6.35	4.61	6.00	5.32

- (a) Construct a 95 percent confidence interval estimate of σ^2 .
- (b) Test the hypothesis that $\sigma^2 = 1.0$. Use $\alpha = 0.05$. What are your conclusions?
- (c) Discuss the normality assumption and its role in this problem.
- (d) Check normality by constructing a normal probability plot. What are your conclusions?

Twenty observations on etch uniformity on silicon wafers are taken during a qualification experiment for a plasma etcher. The data are as follows:

Examp	ble
-------	-----

5.34	6.65	4.76	5.98	7.25
6.00	7.55	5.54	5.62	6.21
5.97	7.35	5.44	4.39	4.98
5.25	6.35	4.61	6.00	5.32

- (a) Construct a 95 percent confidence interval estimate of σ^2 .
- (b) Test the hypothesis that $\sigma^2 = 1.0$. Use $\alpha = 0.05$. What are your conclusions?
- (c) Discuss the normality assumption and its role in this problem.
- (d) Check normality by constructing a normal probability plot. What are your conclusions?

n=20

statistics of the sample

п	Mean	StDev
20	5.829	0.889

Exercises

King Sound Burner

Example

	$\frac{n}{\chi^2_{\alpha/2}}$	(2	-46)							
(20-	-1)	(0.889	$(07)^2$	2	(20-1)	(0.88	$907)^2$			
<u>\</u>		\ \ 0.50	≤	$\sigma^2 \leq$	<u> </u>	007	/			
	32	2.852			8	.907				
0.457	7 /	$\sigma^2 \leq 1$	686							
0.45	$\prime \geq$	$0 \ge \mathbf{V}$.000							
			П	I. Perce	entage Points o	of the χ^2 I	Distribution	l.		
					α					
	v	.995	.990	.975	.950	.500	.050	.025	.010	.005
	1	0.00 +	0.00 +	0.00 -	- 0.00 +	0.45	3.84	5.02	6.63	7.88
	2	0.01	0.02	0.05	0.10	1.39	5.99	7.38	9.21	10.60
	3	0.07	0.11	0.22	0.35	2.37	7.81	9.35	11.34	12.84
	4	0.21	0.30	0.48	0.71	3.36	9.49	11.14	13.28	14.86
	5	0.41	0.55	0.83	1.15	4.35	11.07	12.38	15.09	16.75
	6	0.68	0.87	1.24	1.64	5.35	12.59	14.45	16.81	18.55
	7	0.99	1.24	1.69	17	6.35	14.07	16.01	18.48	20.28
	8	1.34	1.65	2.18	2.73	7.34	15.51	17.53	20.09	21.96
	9	1.73	2.09	2.70	3.33	8.34	16.92	19.02	21.67	23.59
	10	2.16	2.56	3.25	3.94	9.34	18.31	20.48	23.21	25.19
	11	2.60	3.05	3.82	4.57	10.34	19.68	21.92	24.72	26.76
	12	3.07	3.57	3.82 4.40	5.23	11.34	21.03	23.34	26.22	28.30
	12	3.57	4.11	5.01	5.89	12.34	22.36	23.34	20.22	29.82
	13	4.07	4.66	5.63	6.57	12.34	23.68	26.12	27.09	31.32
	14	4.60	4.00 5.23	5.63 6.27	7.26	13.34	25.00	20.12	29.14 30.58	32.80
	16	5.14	5.81	6.91	7.96	15.34	26.30	28.85	32.00	34.27
	17	5.70	6.41	7.56	8.67	16.34	27.59	30.19	33.41	35.72
	18	6.26	7.01	8.23	9.39	17.34	28.87	31.53	34.81	37.16
	19	6.84	7.63	8.91	10.12	18.34	30.14	32.85	36.19	38.58
	20	7.43	8.26	9.59	10.85	19.34	31.41	34.17	37.57	40.00
	25	10.52	11.52	13.12	14.61	24.34	37.65	40.65	44.31	46.93

Example

Exercises

Test the hypothesis that $\sigma^2 = 1.0$. Use $\alpha = 0.05$. What are your conclusions?

$H_0: \sigma^2$	= 1
$H_1: \sigma^2$	≠1

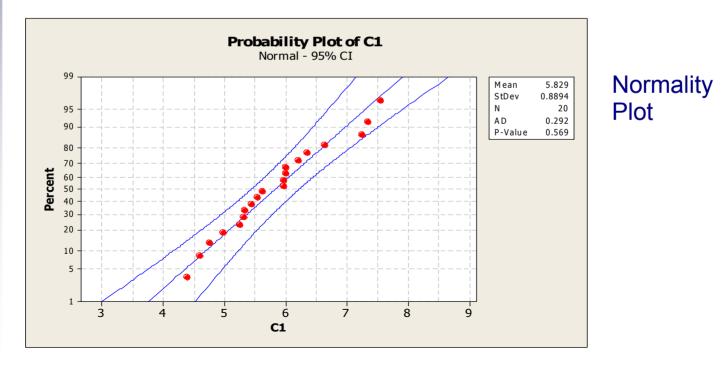
Table 2-7	Tests on	Variances	of Normal	Distributions
-----------	----------	-----------	-----------	---------------

Hypothesis	Test Statistic	Criteria for Rejection
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$		$\chi_0^2 > \chi_{\alpha/2,n-1}^2$ or $\chi_0^2 < \chi_{1-\alpha/2,n-1}^2$
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$	$\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi_0^2 < \chi_{1-\alpha,n-1}^2$
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$		$\chi_0^2 > \chi_{lpha,n-1}^2$

Exercises

Example

 $\chi^2_{0.025,19} = 32.852$ $\chi^2_{0.975,19} = 8.907$ Do not reject. There is no evidence to indicate that $\sigma^2 \neq 1$ The normality assumption is much more important when analyzing variances then when analyzing means. A moderate departure from normality could cause problems with both statistical tests and confidence intervals. Specifically, it will cause the reported significance levels to be incorrect.= 15.016



Example

An article in the Journal of Strain Analysis (vol. 18, no. 2, 1983) compares several procedures for predicting the shear strength for steel plate girders. Data for nine girders in the form of the ratio of predicted to observed load for two of these procedures, the Karlsruhe and Lehigh methods, are as follows:

Girder	Karlsruhe Method	Lehigh Method	
S1/1	1.186	1.061	
S2/1	1.151	0.992	
S3/1	1.322	1.063	
S4/1	1.339	1.062	
S5/1	1.200	1.065	
S2/1	1.402	1.178	
S2/2	1.365	1.037	
S2/3	1.537	1.086	
S2/4	1.559	1.052	

(a) Is there any evidence to support a claim that there is a difference in mean performance between the two methods? Use $\alpha = 0.05$.

(c) Construct a 95 percent confidence interval for the difference in mean predicted to observed load.

(d) Investigate the normality assumption for both samples.

Example

Exercises

difference in mean performance between the two methods? Use a = 0.05

Girder	Karlsruhe Method	Lehigh Method	Difference	Difference^2
S1/1	1.186	1.061	0.125	0.015625
S2/1	1.151	0.992	0.159	0.025281
S3/1	1.322	1.063	0.259	0.067081
S4/1	1.339	1.062	0.277	0.076729
S5/1	1.200	1.065	0.135	0.018225
S2/1	1.402	1.178	0.224	0.050176
S2/2	1.365	1.037	0.328	0.107584
S2/3	1.537	1.086	0.451	0.203401
S2/4	1.559	1.052	0.507	0.257049
		Sum =	2.465	0.821151
		Average =	0.274	

$$\begin{array}{l} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{array} \text{ or equivalently} \begin{array}{l} H_0: \mu_d = 0 \\ H_1: \mu_d \neq 0 \end{array}$$

The test statistic for this hypothesis is

$$t_0 = \frac{\overline{d}}{S_d / \sqrt{n}} \tag{2-41}$$

where

$$\overline{d} = \frac{1}{n} \sum_{j=1}^{n} d_j \tag{2-42}$$

is the sample mean of the differences and

$$S_d = \left[\frac{\sum_{j=1}^n (d_j - \overline{d})^2}{n-1}\right]^{1/2} = \left[\frac{\sum_{j=1}^n d_j^2 - \frac{1}{n} \left(\sum_{j=1}^n d_j\right)^2}{n-1}\right]^{1/2}$$
(2-43)

Example

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{1}{9} (2.465) = 0.274$$

$$s_d = \left[\frac{\sum_{i=1}^{n} d_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} d_i\right)^2}{n-1} \right]^{\frac{1}{2}} = \left[\frac{0.821151 - \frac{1}{9} (2.465)^2}{9-1} \right]^{\frac{1}{2}} = 0.135$$

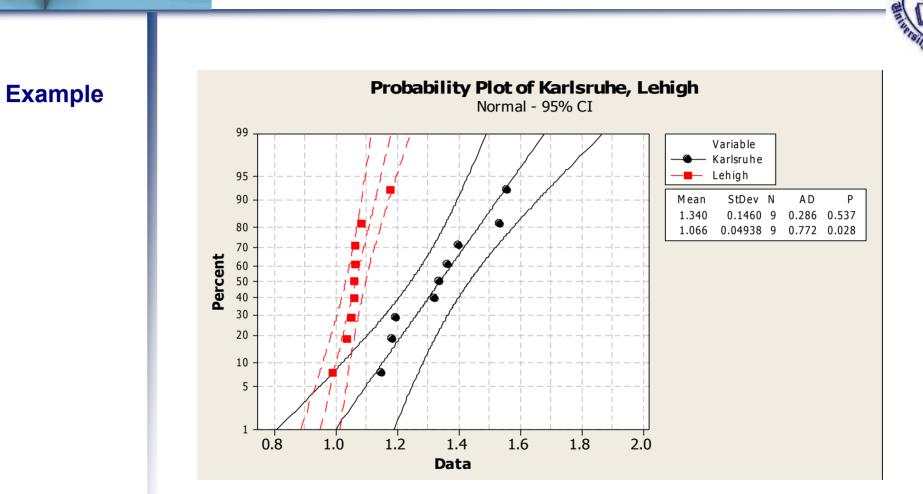
$$t_0 = \frac{\overline{d}}{\frac{S_d}{\sqrt{n}}} = \frac{0.274}{\sqrt{9}} = 6.08$$

$$t_{\frac{9}{2}, n-1} = t_{0.025, 9} = 2.306$$
, reject the null hypothesis.

95 percent confidence interval for the difference in mean predicted to observed load

$$\begin{aligned} \overline{d} - t_{\alpha/2, n-1} \frac{S_d}{\sqrt{n}} &\leq \mu_d \leq \overline{d} + t_{\alpha/2, n-1} \frac{S_d}{\sqrt{n}} \\ 0.274 - 2.306 \frac{0.135}{\sqrt{9}} &\leq \mu_d \leq 0.274 + 2.306 \frac{0.135}{\sqrt{9}} \\ 0.17023 &\leq \mu_d \leq 0.37777 \end{aligned}$$

Airy Same Shirts

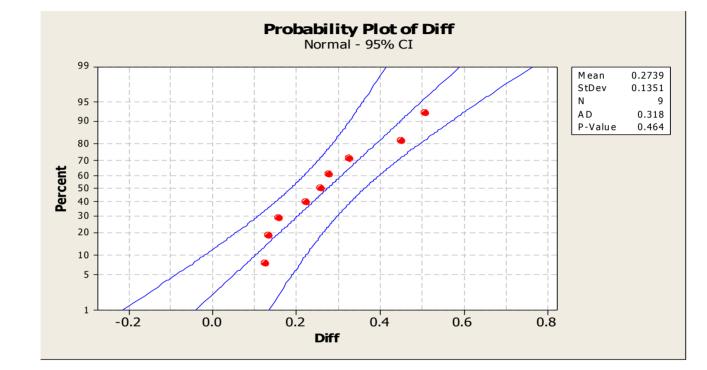


Exercises

Exercises

And Some and

Example



In the paired t-test, the assumption of normality applies to the distribution of the differences. That is, the individual sample measurements do not have to be normally distributed, only their difference