

Forecasting

Part 3 By ATEEKH UR REHMAN

OM Strategy Decisions

Overview of Quantitative Approaches

Naive Approach

Assumes demand in next period is the same as demand in most recent period

e.g., If January sales were 68, then February sales will be 68

Sometimes cost effective and efficient

Can be good starting point

Moving Average Method

- MA is a series of arithmetic means
- Used if little or no trend
- Used often for smoothing

Provides overall impression of data over time

Moving average =
$$\frac{\sum \text{ demand in previous } n \text{ periods}}{n}$$

Moving Average Example

Weighted Moving Average

- Used when some trend might be present
 - Older data usually less important
- Weights based on experience and intuition

Weighted moving average =	∑ (weight for period <i>n</i>) x (demand in period <i>n</i>)
	∑ weights

Exponential Smoothing

Form of weighted moving average Weights decline exponentially Most recent data weighted most \bullet Requires smoothing constant (α) Ranges from 0 to 1 Subjectively chosen Involves little record keeping of past data

Exponential Smoothing

New forecast = Last period's forecast + α (Last period's actual demand - Last period's forecast)

$$F_t = F_{t-1} + \alpha (A_{t-1} - F_{t-1})$$

where F_t = new forecast

 F_{t-1} = previous forecast

 A_{t-1} = Actual Demand for period 't-1'

 α = smoothing (or weighting) constant ($0 \le \alpha \le 1$)

Exponential Smoothing Example

In January a car dealer predicted for February demand of 142 Ford Mustangs . Actual February demand was 153 autos. Using smoothing constant chosen by management of $\alpha = 0.20$, the dealer wants to forecast March demand using the exponential smoothing model.

Predicted demand = 142 Ford Mustangs Actual demand = 153 Smoothing constant α = .20 New forecast = 142 + .2(153 - 142) = 142 + 2.2 = 144.2 \approx 144 cars