Sheet #2 Boolean Algebra & Circuits Design

Exercise #1

- a) Draw the correspondent circuit of this Boolean expression: $\overline{A \cdot (\overline{C} + D)} \equiv (B \oplus E)$
- b) Give the logic expression of the output F and fill its the truth table.

B + BC =

Exercise #2

Complete:

$\bar{A} + 0 =$	$\bar{A} \cdot 1 =$
$B\overline{D} + D =$	A(A+C) =

Simplify $(\bar{A} + B)(\bar{A} + \bar{B}) =$

Simplify using consensus theorem $A\overline{B} + C\overline{A} + C\overline{B} =$

Exercise #3

Design a logic circuit that permits to compare two binary words (A_1A_0) and (B_1B_0) . The result is obtained by three outputs:

G (= 1 if A>B), E (= 1 if A=B) and L (= 1 if A<B).

Exercise #4

- 1. Design a circuit for a half-adder (to add two bits),
- 2. Design a circuit for a full-adder (to add two bits and a carry),
- 3. Design a circuit permitting to add two binary words (4-bits each),
- 4. Use the same previous steps to do the subtraction,
- 5. How can we merge the two circuits to have a universal circuit?

Exercise #5

Give the Boolean expressions of F_1 to F_7 .

