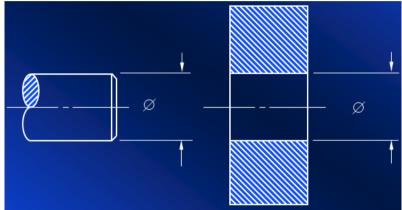


IE-352 Summer Semester 1433-34 H MANUFACTURING PROCESSES - 2

Homework 2 ANSWERS

Answer the following questions.

1. Look at the hole-shaft system below and answer the following questions


Basic Shaft System

Nominal Size = 15.5 mm

Hole Tolerance = .041

Shaft Tolerance = .027

Allowance = .013

Determine,

- a) Hole size using stacked limits form and referenced to basic size
- b) Shaft size using stacked limits form and referenced to basic size

Given:

- Basic shaft system
- Basic size = 15.500 mm
- Allowance = 0.013
- $Tol_{sh} = 0.027$
- $Tol_{hole} = 0.041$

<u>Shaft</u>	Hole							
BS = 15.500	BS = 15.500							
MMC = BS = 15.500	MMC = BS + Allowance							
$LMC = MMC - Tol_{sh}$	= 15.500 + 0.013							
= 15.500 - 0.027	= 15.513							
= 15.473	$LMC = MMC + Tol_{hole}$							
	= 15.513 + 0.041							
	= 15.554							
Shaft size:	Hole size:							
• Stacked limits form: $\phi_{15.473}^{15.500}$	• Stacked limits form: $\phi_{15.513}^{15.554}$							
Referenced to BS:	Referenced to BS:							
ϕ 15. 500 $^{0}_{-0.027}$	ϕ 15. 500 $^{+0.054}_{+0.013}$							

2. Using the standard fit tables, you are required to determine the limits for a nominal $1\frac{2}{16}$ " diameter RC 5 fit between a shaft and a hole.

Determine,

- a) Hole size using stacked limits form and referenced to basic size
- b) Shaft size using stacked limits form and referenced to basic size

Given:

- Hole-shaft system
- Basic size = $1\frac{2}{16}$ in = 1 + 0.125 = 1.1250 in.
- RC 5 fit, i.e. Running/Sliding Fit of classification (type) 5
- Assume: basic hole system (to access ANSI table for RC fits) **Required:**
 - Shaft size (stacked limits form and referenced to BS)
 - Hole size (stacked limits form and referenced to BS)

Solution:

• Using BS (1.125 in) and RC table (attached) \Rightarrow

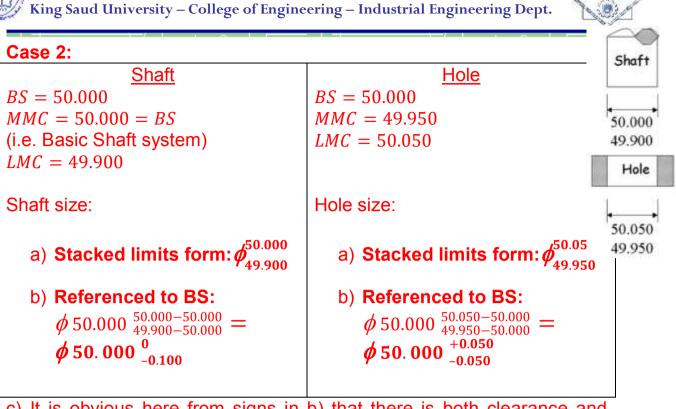
Nominal Size Range,	Limits of	Hole limits	Shaft limits								
(in.)	clearance	(in./1000)	(in./1000)								
Over To	(in./1000)										
0.71 < BS (1.125) < 1.19	+1.6	+1.2	-1.6								
	+ 3.6	-0.0	-2.4								

<u>Shaft</u>	Hole
BS = 1.1250	BS = 1.1250
$MMC = BS - \left(\frac{1.6}{1000}\right)$	MMC = BS + 0 = 1.1250
= 1.1250 - 0.0016	$LMC = BS + \left(\frac{1.2}{1000}\right)$
= 1.1234	= 1.1250 + 0.0012
$LMC = BS + \left(\frac{-2.4}{1000}\right) = 1.1250 - 0.0024$	= 1.1262
= 1.1226	Hole size:
Shaft size:	LMC
• Stacked limits form: $\phi_{1.1226}^{1.1234}$ • M	MC (clearance) (clearance)
· 1.1226 ◀	• Stacked limits form: $\phi_{1,1262}^{1,1262}$
Referenced to BS:	- 1.1250
ϕ 1. 1250 $^{-0.0016}_{-0.0024}$	Referenced to BS:
/ -0.0024	ϕ 1. 1250 $_0^{+0.0012}$

Shat

3. Examine the figure below showing a series of shaft-hole systems all having the same basic size of 50.000 *in*.

Case 1:				
$\frac{Shaft}{BS = 50.000}$ $MMC = 50.100$ $LMC = 50.080$	BS = 50.000 MMC = 50.000 = BS	50.100 50.080 Hole		
Shaft size:	Hole size:	.050		
a) Stacked limits form: $\phi_{50.080}^{50.100}$	a) Stacked limits form: $\phi_{50.000}^{50.050}$			
b) Referenced to BS: ϕ 50.000 $\frac{50.100-50.000}{50.080-50.000} =$ ϕ 50.000 $\frac{+0.100}{+0.080}$	b) Referenced to BS: $\phi 50.000 \frac{50.050-50.000}{50.000-50.000} = \phi 50.000 \frac{+0.050}{0}$			

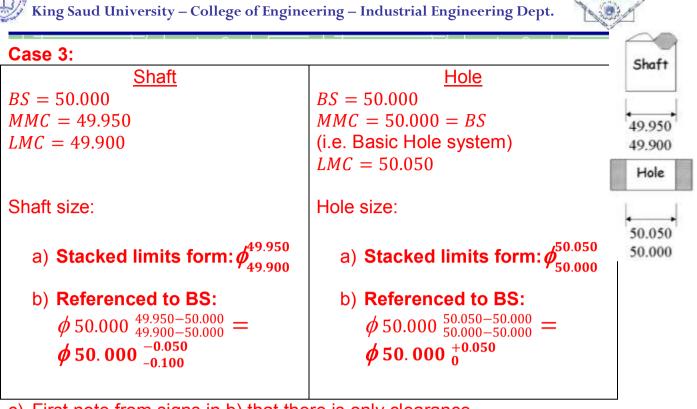

c) First note from signs in b) that there is no clearance, i.e. only interference. Also note that -as opposed to clearance- max. interference occurs at the MMC and min. interference occurs at LMC as seen from the figure on the right: $\phi_{50.080}^{50.100}$ MMC LMC $\phi_{50.080}^{50.050}$ Thus,

 $intereference_{Max} = MMC_{shaft} - MMC_{hole} = 50.100 - 50.000 = 0.100$

intereference_{min} = $LMC_{shaft} - LMC_{hole} = 50.080 - 50.050 = 0.030$

- d) As shown above, this is a **Basic Hole system**
- e) This is a **force fit** (most likely since values form relatively large interferences) or **location intereference fit**

King Saud University – College of Engineering – Industrial Engineering Dept.


c) It is obvious here from signs in b) that there is both clearance and interference; thus, $\phi_{49.900}^{50.000}$ $intereference_{Max} = MMC_{shaft} - MMC_{hole} = 50.000 - 49.950 = 0.050$

 $clearance_{Max} = LMC_{hole} - LMC_{shaft} = 50.050 - 49.900 = 0.150$

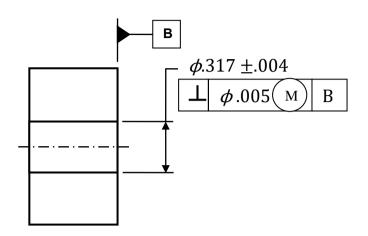
d) As shown above, this is a **Basic Shaft system**

e) The transition shown from interference (@MMC) to clearance (@LMC) shows this to be a location transition fit

King Saud University – College of Engineering – Industrial Engineering Dept.

c) First note from signs in b) that there is only clearance. Thus, $\phi_{49.900}^{49.950}$ LMC 50.050 50.000

 $clearance_{Max} = LMC_{hole} - LMC_{shaft} = 50.050 - 49.900 = 0.150$


 $clearance_{min} = MMC_{hole} - MMC_{shaft} = 50.000 - 49.950 = 0.050$

d) As shown above, this is a **Basic Hole system**

e) This is a running/sliding fit (most likely since values form relatively large clearances) or location clearance fit.

4. Examine the hole system below (dimensions in *mm*) and answer the following questions.

Calculate the geometric tolerance for cross sections in the system having the following sizes:

- a) 0.322
- b) 0.319
- c) Basic size
- d) 0.311

Finally, you are required to repeat each of questions a) through d) above giving that the geometric tolerance is specified RFS.

Given:

- BS = 0.317 mm
 - $\circ Size Tol. = \pm 0.004$
 - $\circ \Rightarrow MMC = BS 0.004 = 0.317 0.004 = 0.313$
 - $\circ \Rightarrow LMC = BS + 0.004 = 0.317 + 0.004 = 0.321$
 - $\circ \Rightarrow 0.313 \leq size \leq 0.321$
- Feature control frame:

⊥ *ф*.005(М) В

- Perpendicularity geometric tolerance (hole)
- \circ GT = 0.005 @ MMC (i.e. allowable GT at MMC is 0.005 mm)
- ⇒ Virtual Condition: $V_c = MMC 0.005 = 0.313 0.005 = 0.308$
- ⇒ @ LMC: $GT_{LMC} = LMC V_c = 0.321 0.308 = 0.013$

 $\circ \Rightarrow 0.005_{@MMC} \leq GT \leq 0.013_{@LMC}$

Required:

- a) $GT_{0.322} = ?$
- b) $GT_{0.319} = ?$
- c) $GT_{BS} = GT_{0.317} = ?$
- d) $GT_{0.311} = ?$

Solution:

a) size = 0.322

Check if within size limits: $0.322 > 0.321 \Rightarrow$ **part is rejected** (note, remachining is not possible here)

b) size = 0.319

- Check size: $0.313 < 0.319 < 0.321 \Rightarrow$ part is acceptable
- o $GT_{0.319} = size V_c = 0.319 0.308 = 0.011$
- Check if within GT limits: 0.005 < 0.011 < 0.013 (⇒ ok)

 $GT_{0.319} = 0.011$

c) size = 0.317

- Check size: $0.313 \le 0.317 \le 0.321 \ (\Rightarrow \text{ ok})$
- $\circ \quad GT_{0.371} = size V_c = 0.317 0.308 = 0.009$
- Check GT: $0.005 < 0.009 < 0.013 (\Rightarrow ok)$

 $GT_{0.317} = 0.009$

d) size = 0.311

Check size: 0.311 < 0.313 ⇒ part is rejected (note, remachining may be possible in this case)

Finally, you are required to repeat each of questions a) through d) above giving that the geometric tolerance is specified RFS.

Given:

- BS = 0.317 mm
 - $\circ Size Tol. = \pm 0.004$
 - $\circ \Rightarrow again MMC = 0.313$
 - $\circ \Rightarrow again LMC = 0.321$
 - $\circ \Rightarrow 0.313 \leq size \leq 0.321$
- Feature control frame:

⊥ φ.005 B

- Perpendicularity geometric tolerance (hole)
- GT = 0.005 (RFS) (i.e. allowable GT at any cross section is 0.005 mm)

Required:

- a) $GT_{0.322} = ?$
- b) $GT_{0.319} = ?$
- c) $GT_{BS} = GT_{0.317} = ?$
- d) $GT_{0.311} = ?$

Solution:

a) *size* = 0.322

Check if within size limits: $0.322 > 0.321 \Rightarrow$ **part is rejected** (note, remachining is not possible here)

b) size = 0.319

◦ Check size: $0.313 < 0.319 < 0.321 \Rightarrow$ part is acceptable

$$\circ GT_{0.319} = 0.005$$

 $GT_{0.319} = 0.005$

c) size = 0.317

• Check size: $0.313 \le 0.317 \le 0.321 \ (\Rightarrow \text{ ok})$

 $\circ GT_{0.317} = 0.005$

$$GT_{0.317} = 0.005$$

d) size = 0.311

○ Check size: $0.311 < 0.313 \Rightarrow$ part is rejected (note,

remachining may be possible in this case)

Nominal Size Range in Inches	Class RC 1			Class RC 2			Class RC 3			Class RC 4			Class RC 5			Class RC 6		
	Limits of Clearance	Standard Limits		limits of learance	Standard Limits		s of ance	Standard Limits		imits of learance	Standard Limits		s of ance	Standard Limits		s of ance	Standard Limits	
		Hole H5	Shaft g4	Limits of Clearance	Hole H6	Shaft g5	Limits of Clearance	Hole H7	Shaft f6	Limit	Hole H8	Shaft f7	Limits of Clearance	Hole H8	Shaft e7	Limits of Clearance	Hole H9	Shaft e8
0 -0.12	0.1 0.45	+ 0.2	- 0.1	0.1	+ 0.25	- 0.1	0.3 0.95	+ 0.4	- 0.3 - 0.55	0.3 1.3	+ 0.6	- 0.3	0.6	+ 0.6	- 0.6	0.6	+ 1.0	- 0.6
0.12 - 0.24	0.15	+ 0.2	-0.15	0.15	+ 0.3	- 0.15	0.4	+ 0.5	- 0.4	0.4	+ 0.7	- 0.4	0.8	+ 0.7	- 0.8	0.8	+ 1.2	- 0.8
0.24 - 0.40	0.2	+ 0.25	- 0.2 - 0.35	0.2	+ 0.4 - 0	- 0.2	0.5	+ 0.6 - 0	- 0.5 - 0.9	0.5	+ 0.9	- 0.5	1.0	+ 0.9	- 1.0 - 1.6	1.0 3.3	+ 1.4	- 1.0 - 1.9
0.40 - 0.71	0.25	+ 0.3	- 0.25	0.25	+ 0.4	- 0.25	0.6	+ 0.7	- 0.6 - 1.0	0.6	+ 1.0	- 0.6	1.2	+ 1.0	- 1.2	1.2 3.8	+ 1.6	- 1.2
0.71 - 1.19	0.3	+ 0.4	- 0.3 - 0.55	0.3	+ 0.5	- 0.3	0.8	* 0.8 - 0	- 0.8 - 1.3	0.8	+ 1.2	- 0.8	1.6 3.6	+ 1.2	- 1.6	1.6 4.8	+ 2.0	- 1.6
1.19 - 1.97							1,000	- 14										
1.97 - 3.15	-																	