MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

Area and Volume

Volume:

In the previous study, we saw that if $f(x,y) \geqslant 0$ and f is continuous, then the double integral

$$\iint_{R} f(x, y) \mathrm{d}A \tag{1}$$

gives the volume of the solid that lies under the graph of z = f(x, y) and over a region R in the xy-plane.

Area:

The double integral (1) can be used to find the area of the region R if $f(\boldsymbol{x},\boldsymbol{y})=1$ which becomes

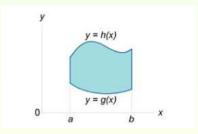
$$\iint_{R} \mathrm{d}A \tag{2}$$

Area and Volume

Double Integral for finding area:

Formula 1 If a region R_x is defined by $a \le x \le b$ and $g(x) \le y \le h(x)$, where g(x), h(x) are continuous on [a, b], then the area A of R_x is given by

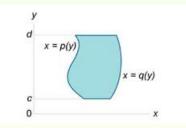
$$A = \int_{a}^{b} \int_{g(x)}^{h(x)} \mathrm{d}y \mathrm{d}x$$



Area and Volume

Formula 2 If a region R_y is defined by $c \leq y \leq d$ and $p(y) \leq x \leq q(y)$, where p(y), q(y) are continuous on [c, d], then the area A of R_y is given by

$$\int_{c}^{d} \int_{p(y)}^{q(y)} \mathrm{d}x \mathrm{d}y$$



Double Integrals

Examples

Sketch the region bounded by the graphs of : (1) $y = x^2$ and y = 2x. Evaluate $\iint (x^3 + 4y) dA$ using R_x region and R_{η} region. (2) $y = \sqrt{x}$ and $y = \sqrt{3x - 18}$ and y = 0 using R_x region and R_y region. (3) reverse the order of the integration and evaluate $\int_0^4 \int_{\sqrt{y}}^2 y \cos x^5 dx dy.$ (4) Find the area A of the region in the xy-plane bounded by the graph of $x = y^3$, x + y = 2 and y = 0(4) Find the volume of the solid that lies under the graph of $z = 4x^2 + y^2$ and over the region in the xy-plane bounded by x + y = 2, x = 0, y = 0 and z = 0.