Umm Al-Qura University Collage of Computer Science and Information Systems. Computer Science Dept.

Midterm Exam Data base

Sem2 of Academic Year 1439-1440

ر						
Q1 (20 ma		Q2 (6 marks)	Q3 (4 marks)	Total (30 marks)		
Juestion	1 Cei	neral Questions	•			
- Multip		=	·•	[15 Marks]		
a.	Hierarc		odel b. N el d. <mark>S</mark> e	lationships in a single structure (object) letwork Database Model emantic Database Model -Oriented Database (OODBM)		
als	o inclu	ded is called	ther with the dat	a itself. Sometimes, the applications are		
		<mark>se system</mark> se Management Sy		atabase Model atabase Schema		
a.	Hierarc			tionships in theletwork Database Model emantic Database Model		
			to logically grou	p objects such as tables, views, stored		
a.		ss se system se Management Sy		Patabase Model Patabase Schema		
a.	e candi Candid Super k	ate Key	b. A	s primary key are Ilternate Key rimary Key		
6. No a. c.	~ •	ate Key	 b. A	can have NULL values Iternate Key <mark>rimary Key</mark>		
sec		nany instances o tity can relate to - 1	of the second enti			

(a. Multivalued attributec. Composite attribute	b. Single Attribute d. Derived attribute			
Ģ	2. The outcome of the a. Requirement analysis c. Logical Design	phase is an entity-re b. Conceptual Design d. Physical Design		diagra	m
]	terminology of the three-leve	ponds to designing the inter l DBMS architecture b. Conceptual Design d. Physical Design	nal schema	in the	
]	1.In the SQL i a. Network Database Model c. Relational Database Model	b. Hierarchical Database Mod	del		
1	2.In the ERD the relationship b a. One to One c. Many to Many		e	_	
1	3 The set of allowable valuesa. Domain of attributec. Tuple	for one or more attributes: b. Degree of relation d. None of these			
]	4 The restrictions placed on tha. Business rulesc. Relationships	ne data in the relational datal b. Constraints d. All of these	pase is call	ed	
1	5. The number of instances of o instance of the other entity ty a. Cardinality of relationship c. Binary relationship		ssociated w	ith eac	ch
	True of false and correct the false . Entity integrity states that the		[5 Marks] t either mat		andidate
	key value of some existing tu	ple in the home relation or (2) be null		
	Referential integrity		(F)
ł	b. Week entity type is the one w	hose instances can exist ind	ependently	I	
			(F)
	Strong				

C.	There can be multiple Candidate Keys in one table. Each Candidate Key can				
	qualify as Super Key	(F)	
	Primary key				
d.	d. Database administrator uses the database for queries, reports, and update				
	database content.	(F)	
	end-user				
e.	Each row in a relational table is an Entity instance	(T)	

Question 2: (1) What is the difference between each TWO of the following [4 Marks]

a) Simple attribute vs Composite attribute

Simple Attribute: Attribute that hold a atomic/single value.

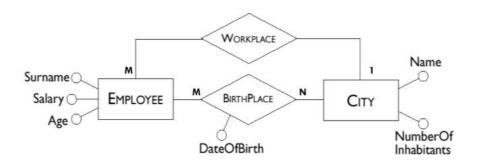
Composite Attribute: Attribute value not atomic. It is attribute that can further subdivided

b) Single valued attribute vs Multi-valued attribute

Single Valued Attribute: is an attribute that can have only a single value. Multi Valued Attribute: Attribute that hold multiple values.

c) Stored attribute vs Derived attribute

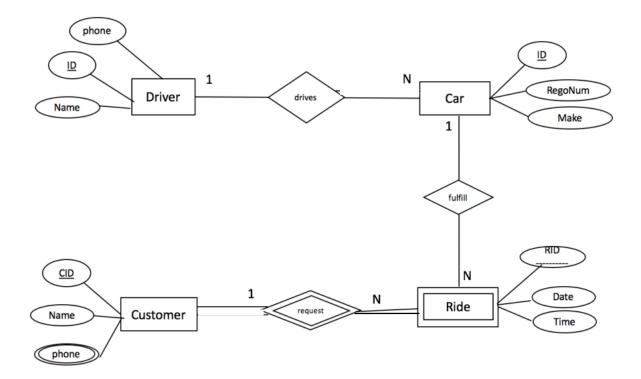
Stored Attribute: An attribute that supplies a value to the related attribute. Derived Attribute: An attribute that's value is derived from a stored attribute.

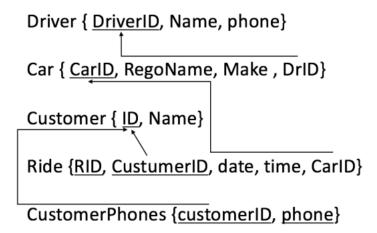

d) Primary Key vs Foreign Key

A key which is used to uniquely identify a record in a table(relation) is called primary key A foreign key is an attribute or set of attributes in a relation whose values match a primary key in another relation.

(3) Draw an ER diagram based on the following:

[2 Marks]


Suppose we have two entity sets: employee contains id and name and city contains code and name. Employees are working in a city. In addition, some of the employees were born in the same cities that they work on, at a certain date of birth. Draw also at least two attributes for the entities from your mind.



Question 3: Mapping to Relational Model

[4 Marks]

(1) Convert the following ERD into Relations using the relational model approach.

Bonus: Convert the Chen's notation in (1) to the UML notation [2 Marks]

End exam.