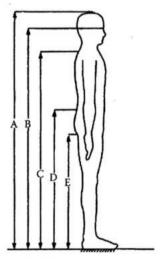


King Saud University – College of Engineering – Industrial Engineering Dept.

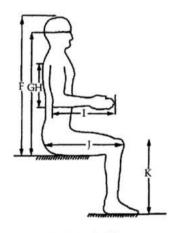
IE-341

Section 1, CRN: 30512; Section 2, CRN: 30515; Section 3, CRN: 38299 First Semester 1433-34 H (Fall-2012) – 3(2,1,2) HUMAN FACTORS ENGINEERING


Saturday, Sep 29, 2012 (13/11/1433H)

Quiz 2 ANSWERS

Name:	Student Number:	Section:		
	4	9:00 / 10:00 / 11:00		


PART – A. Examine the figures below carefully then answer the questions to follow. The data shown represents standing and sitting dimensions in meters for US adults. [2 points each]

Name	Dimension		Male			Female	
		$5 \mathrm{th}\%$	$50 \mathrm{th}\%$	95th%	$5 \mathrm{th} \%$	$50 \mathrm{th}\%$	95 th%
Stature	A	1.649	1.759	1.869	1.518	1.618	1.724
Eye height (standing)	В	1.545	1.644	1.748	1.427	1.520	1.630
Mid shoulder height	C	1.346	1.444	1.564	1.210	1.314	1.441
Waist height	D	0.993	1.102	1.168	0.907	0.985	1.107
Buttocks height	E	0.761	0.839	0.919	0.691	0.742	0.832
Sitting height	F	0.859	0.927	0.975	0.797	0.853	0.911
Eye height (sitting)	G	0.743	0.800	0.855	0.692	0.743	0.791
Upper arm length	H	0.333	0.361	0.389	0.306	0.332	0.358
Lower arm $+$ hand length	I	0.451	0.483	0.517	0.396	0.428	0.458
Upper leg length	J	0.558	0.605	0.660	0.531	0.578	0.628
Lower leg length	K	0.506	0.553	0.599	0.461	0.502	0.546

- A. Stature
- B. Eye height (standing)
- C. Mid shoulder height
- D. Waist height
- E. Buttocks height

Sep 29, 2012

- F. Sitting height
- G. Eye height (sitting)
- H. Upper arm length
- I. Lower arm/hand length
- J. Upper leg length
- K. Lower leg length

King Saud University – College of Engineering – Industrial Engineering Dept.

- 1. What percentage of US adult males have a height less than or equal to 1.869 *m*?
- 2. What percentage of US adult females have a waist height greater than 1.107 *m*?
- 3. What is the median upper leg length for US adult males?
- **PART B.** Answer the following true (T) or false (F) questions [1 point each]
- 4. A diagram showing the interaction of various body members in different views is called an articulated model. (see slide 13)
- 5. Static anthropometric data is easier to collect and exists in much larger quantities than dynamic data. (see slide 14)
- 6. The distance of a control button from the operator is an example of designing for an average individual. (see slide 17)
- 7. The area suggested by Squires that takes into account the dynamic interaction of both the forearm and elbow movement is called the "optimal work area". (see slide 4)