
ADVANCED	
PROGRAMMING

14013103-4

LECTURE	2
GUI	using	JAVAFX

Created	by	Randah Alharbi	&	Bushra	Algotiml

• Graphical	User	Interface

• How	do	GUIs	works

• Java	APIs	for	graphics	programming	

• Differences	between	JavaFX,	Swing,	and	AWT

• JavaFX	Overview

• JavaFX	Application

• Application	Structure:	Stage,	Scene,	Scene	Graph,	Nodes

• Creating	JavaFX	Application

• Lifecycle	and	terminating	of	JavaFX	Application

• Example

1

Outline

• JavaFX Nodes:

• Shapes: Text, Line, Circle, Rectangle

• Font

• Colors

• Images

• Layout Panes: Pane, StackPane, FlowPane, GridPane, BorderPane, HBox, and VBox

• UI Controls: Label, Button, CheckBox, RadioButton, TextField, TextArea, ComboBox, ListView,

ScrollBar, and Slider.

• Extra	Reading: Effects,	Transformation,	Animation,	JavaFX	CSS	and	MediaPlayer (Audio	and	

Video).

2

Outline

Graphical	User	Interface	and	how	it	works

• A graphical user interface (GUI) presents a user-friendly
mechanism for interacting with an app. A GUI
(pronounced “GOO-ee”) gives an app a distinctive “look-
and-feel.” GUIs are built from GUI components—also
called controls or widgets (short for window gadgets). A
GUI component is an object with which the user interacts
via the mouse, the keyboard or another form of input,
such as voice recognition.

• GUIs loop and respond to events

• Example:	a	mouse	click	on	a	button	
A.	Operating	System	recognizes	mouse	click	

• Determines	which	window	it	was	inside	
• Notifies	that	program	

B.	Program	runs	in	loop	
• Checks	input	buffer	filled	by	OS	
• If	it	finds	a	mouse	click:

• Determines	which	component	in	the	program	
• If	the	click	was	on	a	relevant	component	

• respond	appropriately	according	to	handler	
3

Java	APIs	for	graphics	programming

• JDK (Java Development Kit) provides pre-built graphics classes for constructing
your own Graphical User Interface (GUI) applications.

• These graphics classes, developed by expert programmers, are highly complex and
involve many advanced design patterns. However, re-using them are not so
difficult, if you follow the API documentation, samples and templates provided.

• Currently,	there	are	three	sets	of	Java	APIs	for	graphics	programming:	
AWT(Abstract Windowing Toolkit),	Swing and	JavaFX.

1. AWT API	was	introduced	in	JDK	1.0.	Most	of	the	AWT	components	have	
become	old	and	should	be	replaced	by	newer	Swing	components.

2. Swing API,	a	much	more	comprehensive	set	of	graphics	libraries	that	
enhances	the	AWT.

3. The	latest	JavaFX,	which	was	integrated	into	JDK	8,	is	meant	to	replace	Swing.

4

Differences	between	JavaFX,	Swing,	and	AWT

• AWT is fine for developing simple graphical user interfaces, but not for developing
comprehensive GUI projects.

• JavaFX is easier to use—it provides one API for GUI, graphics and multimedia
(images, animation, audio and video), whereas Swing is only for GUIs, so you need
to use other APIs for graphics and multimedia apps.

• With Swing, many IDEs provided GUI design tools for dragging and dropping
components onto a layout; however, each IDE produced different code. JavaFX
Scene Builder can be used standalone or integrated with many IDEs and it
produces the same code regardless of the IDE.

• Though Swing components could be customized, JavaFX gives you complete
control over a JavaFX GUI’s look-and-feel via Cascading Style Sheets (CSS).

5

JavaFX	Overview

• JavaFX is a set of graphics and media packages that enables developers to design, create, test,

debug, and deploy rich client applications that operate consistently across diverse platforms.

Features of JavaFX:

• Written in Java: The JavaFX library is written in Java and is available for the languages that can be

executed on a JVM, which include – Java, Groovy and JRuby. These JavaFX applications are also

platform independent.

• FXML: JavaFX features a language known as FXML, which is a HTML like declarative markup

language. The sole purpose of this language is to define a user Interface.

• Scene Builder: JavaFX provides an application named Scene Builder. On integrating this application

in IDE’s such as Eclipse and NetBeans, the users can access a drag and drop design interface, which

is used to develop FXML applications (just like Swing Drag & Drop and DreamWeaver Applications).

6

JavaFX	Overview

• Built-in UI controls: JavaFX library caters UI controls using which we can develop a

full-featured application.

• CSS like Styling: JavaFX provides a CSS like styling. By using this, you can improve

the design of your application with a simple knowledge of CSS.

• Rich set of API’s: JavaFX provides a complete API with a rich set of classes and

interfaces to build GUI applications with rich graphics such as: 2D and 3D

graphics, Media, UI controls, Web, Graphics Animation, Effects, Event handling,

etc.

7

8

JAVAFX	Application

Stage,	Scene,	Scene	Graph,	Nodes

JavaFX	Application

• Application	Structure

• Stage

• Scene

• Scene	Graph	and	Nodes

• Creating	JavaFX	Application

• Application	class

• Preparing	the	Scene	Graph

• Preparing	the	Scene

• Preparing	the	stage

• Lifecycle	of	JavaFX	Application

• Terminating	the	JavaFX	Application

9

Example	– Creating	an	Empty	Window

import javafx.application.Application;

import javafx.scene.Group;
import javafx.scene.Scene;

import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class JavafxSample extends Application {

@Override
public void start(Stage primaryStage) throws Exception {

Group group = new Group(); //creating a Group object
Scene scene = new Scene(group ,600, 300); //Creating a Scene by passing the group object,

height and width

scene.setFill(Color.RED); //setting color to the scene

primaryStage.setTitle("Sample Application"); //Setting the title to Stage.
primaryStage.setScene(scene); //Adding the scene to Stage
primaryStage.show(); //Displaying the contents of the stage

}

public static void main(String args[]){
launch(args);

}
}

10

JavaFX	Application	- Stage

• In general, a JavaFX application will have three
major components namely Stage, Scene and
Nodes as shown in the next diagram.

Stage:

• A stage (a window) contains all the objects of a
JavaFX application.

• It is represented by Stage class of the package
javafx.stage.

• The primary stage is created by the platform
itself. The created stage object is passed as an
argument to the start() method of the
Application class.

11

JavaFX	Application	- Stage

Stage:

• A stage has two parameters determining its
position namely Width and Height. It is divided
as Content Area and Decorations (Title Bar and
Borders).

• There are five types of stages available
(Decorated, Undecorated, Transparent, Unified,
Utility)

• You have to call the show() method to display
the contents of a stage.

12

JavaFX	Application	- Scene

Scene:

• A scene represents the physical contents of a JavaFX

application.

• It contains all the contents of a scene graph.

• The class Scene of the package javafx.scene

represents the scene object. At an instance, the scene
object is added (passed) to only one stage.

• You can create a scene by instantiating the Scene Class.

• You can opt for the size of the scene by passing its
dimensions (height and width) along with the root node to

its constructor.

13

JavaFX	Application	– Scene	Graph	and	Node

Scene Graph:

• In JavaFX, the GUI Applications were coded using a Scene

Graph. A Scene Graph is the starting point of the
construction of the GUI Application. It holds the (GUI)

application primitives that are termed as nodes.

• Scene Graph API makes GUI easier to create, especially

when complex visual effects and transformations are
involved.

• A scene graph is a tree-like data structure (hierarchical)
representing the contents of a scene. In contrast, a node

is a visual/graphical object of a scene graph.

14

JavaFX	Application	– Scene	Graph	and	Node

Node:

• The individual items held within the JavaFX scene graph
are known as nodes, it may include:

• Geometrical (Graphical) objects – (2D and 3D) such as
circle, rectangle, polygon, etc.

• UI controls – such as Button, Checkbox, Choice box,
Text Area, etc.

• Containers – (layout panes) such as Border Pane, Grid
Pane, Flow Pane, etc.

• Media elements – such as audio, video and image
objects.

• In general, a collection of nodes makes a scene graph. All
these nodes are arranged in a hierarchical order.

• A node instance can be added to a scene graph only once.

15

JavaFX	Application	– Scene	Graph	and	Node

Node:

• The nodes of a scene graph can have Effects, Opacity,
Transforms, Event Handlers, Application Specific States.

• The Node Class of the package javafx.scene

represents a node in JavaFX, this class is the super class
of all the nodes.

• Each node is one of three types:

• A root node (the first node in the tree and it never
has a parent).

• A branch node/Parent Node (meaning that it can
have children).

• A leaf node (meaning that it cannot have children).

16

JavaFX	Application	– Scene	Graph	and	Node

• Root Node: The first node in the Scene Graph is known as the Root node.

• Branch Node/Parent Node: The node with child nodes are known as branch/parent nodes.

• The abstract class named Parent of the package javafx.scene is the base class of all the

parent nodes, and those parent nodes will be of the following types:

• Group: A group node is a collective node that contains a list of children nodes.

• Panes: Are container classes, called panes, for automatically laying out the nodes in a desired location
and size. You place nodes inside a pane and then place the pane into a scene.

• Leaf Node: The node without child nodes is known as the leaf node. For example, Rectangle,

Ellipse, Text, ImageView, MediaView are examples of leaf nodes.

• It is mandatory to pass the root node of the scene graph to the scene. If the Group is passed as

root, all the nodes will be clipped to the scene and any alteration in the size of the scene will not
affect the layout of the scene.

• The root node can be any type of the parent nodes. Usually Group or Pane.

17

Creating	a	JavaFX	Application

• The Application class of the package javafx.application is the entry point of the

application in JavaFX.

• To create a JavaFX application, you need to inhert (extend) the Application class and
implement its abstract method start().

• In start() method, you need to write the entire code for the JavaFX graphics.

• In the main method, you have to launch the application using the launch() method. This
method internally calls the start() method of the Application class.

18

public class JavafxSample extends Application {

@Override
public void start(Stage primaryStage) throws Exception {
/* Code for JavaFX application. (Stage, scene, scene graph) */

}

public static void main(String args[]){
launch(args);

}
}

Creating	a	JavaFX	Application

•Within the start() method, in order to create a typical JavaFX
application, you need to follow the steps given below:

1- Prepare a scene graph with the required nodes.

2- Prepare a Scene with the required dimensions and add the
scene graph to it.

3- Prepare a stage and add the scene to the stage and display the
contents of the stage.

19

Example	– Creating	an	Empty	Window

import javafx.application.Application;

import javafx.scene.Group;
import javafx.scene.Scene;

import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class JavafxSample extends Application {

@Override
public void start(Stage primaryStage) throws Exception {

Group group = new Group(); //creating a Group object
Scene scene = new Scene(group ,600, 300); //Creating a Scene by passing the group object,

height and width

scene.setFill(Color.RED); //setting color to the scene

primaryStage.setTitle("Sample Application"); //Setting the title to Stage.
primaryStage.setScene(scene); //Adding the scene to Stage
primaryStage.show(); //Displaying the contents of the stage

}

public static void main(String args[]){
launch(args);

}
}

20

Creating	a	JavaFX	Application	
1- Preparing	the	Scene	Graph

• As per your application, you need to prepare a scene graph with required nodes.

• Since the root node is the first node, you need to create a root node.

• As a root node, you can choose either Group or any kind of Pane.

- Group:

Group root = new Group();

- Pane:

StackPane root_pane = new StackPane();

21

Creating	a	JavaFX	Application	
2- Preparing	the	Scene

• A JavaFX scene is represented by the Scene class of the package javafx.scene.
You can create a Scene by instantiating this class.

• While instantiating, it is mandatory to pass the root object (the root of the scene
graph) to the constructor of the scene class.

Scene scene = new Scene(root);

• You can also pass two parameters of double type representing the height and
width of the scene.

Scene scene = new Scene(root, 600, 300);

22

Creating	a	JavaFX	Application	
3- Preparing	the	Stage

• Stage is represented by Stage class of the package javafx.stage.

• Using this object, you can perform various operations on the stage such as:

• Set the title for the stage using the method setTitle().

primaryStage.setTitle("Sample application");

• Attach the scene object to the stage using the setScene()method.

primaryStage.setScene(scene);

• Display the contents of the scene using the show() method as shown

below.

primaryStage.show();

23

Lifecycle	of	JavaFX	Application

• The JavaFX Application class has three life cycle methods, which are:

• start() − The entry point method where the JavaFX graphics code is to be written.

• stop() − An empty method which can be overridden, here you can write the logic to stop
the application.

• init() − An empty method which can be overridden, but you cannot create stage or scene
in this method.

• In addition to these, it provides a static method named launch() to launch JavaFX application.

• Since the launch() method is static, you need to call it from a static context (main generally).
Whenever a JavaFX application is launched, the following actions will be carried out (in the same
order).

• An instance of the application class is created.

• init()method is called.

• The start()method is called.

• The launcher waits for the application to finish and calls the stop()method.

24

Terminating	the	JavaFX	Application

• When the last window of the application is closed, the JavaFX application is
terminated implicitly. You can turn this behavior off by passing the Boolean

value “False” to the static method setImplicitExit() (should be
called from a static context).

• You	can	terminate	a	JavaFX	application	explicitly	using	the	
methods Platform.exit() or System.exit(int).

25

JavaFX	important	pakages

• The important packages of JavaFX API are:

• javafx.animation: Contains classes to add transition based animations such as fill, fade,

rotate, scale and translation, to the JavaFX nodes.

• javafx.application: Contains a set of classes responsible for the JavaFX application life cycle.

• javafx.css: Contains classes to add CSS–like styling to JavaFX GUI applications.

• javafx.event: Contains classes and interfaces to deliver and handle JavaFX events.

• javafx.geometry: Contains classes to define 2D objects and perform operations on them.

• javafx.stage: This package holds the top level container classes for JavaFX application.

• javafx.scene: This package provides classes and interfaces to support the scene graph. In

addition, it also provides sub-packages such as canvas, chart, control, effect, image, input, layout,

media, paint, shape, text, transform, web, etc. There are several components that support this rich

API of JavaFX.

26

Example	– Creating	an	Empty	Window

import javafx.application.Application;

import javafx.scene.Group;
import javafx.scene.Scene;

import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class JavafxSample extends Application {

@Override
public void start(Stage primaryStage) throws Exception {

Group group = new Group(); //creating a Group object
Scene scene = new Scene(group ,600, 300); //Creating a Scene by passing the group object,

height and width

scene.setFill(Color.RED); //setting color to the scene

primaryStage.setTitle("Sample Application"); //Setting the title to Stage.
primaryStage.setScene(scene); //Adding the scene to Stage
primaryStage.show(); //Displaying the contents of the stage

}

public static void main(String args[]){
launch(args);

}
}

27

Example	– Creating	an	Empty	Window	(Output)

28

29

JAVAFX	Nodes

-Shapes,	Color,	Font,	Text	and	Image-

JavaFX	Nodes:

JavaFX	Nodes:

• Shapes:	Text,	Line,	Circle,	Rectangle

• Font

• Colors

• Images

• Layout	Panes:	Pane,	StackPane,	FlowPane,	GridPane,	BorderPane,	

HBox,	and	VBox

• UI	Controls:	Label,	Button,	CheckBox,	RadioButton,	TextField,	
PasswordField,	TextArea,	ComboBox,	ListView,	ScrollBar,	Slider,	and	

MediaPlayer.

30

JavaFX	Shapes

• JavaFX provides many shape classes for drawing

texts, lines, circles, rectangles, ellipses, arcs,

polygons, and polylines.

• The Shape class is the abstract base class that

defines the common properties for all shapes.

• Among them are the fill, stroke, and

strokeWidth properties.

• The fill property specifies a color that fills the

interior of a shape. The stroke property specifies

a color that is used to draw the outline of a shape.

The strokeWidth property specifies the width of

the outline of a shape.

• The classes Text, Line, Rectangle,

Circle all are subclasses of the Shape class. So,

they inherit all the properties from the Shape

class.
31

A	shape	is	a	node.	The	Shape	class	is	the	root	of	all	shape	classes.

JavaFX	Shapes	- Text

• The text node is represented by the class named Text, which belongs to the

package javafx.scene.text.

• This class contains several properties to create text in JavaFX and modify its appearance. This class
also inherits the Shape class which belongs to the package javafx.scene.shape.

• The class Text contains a property named text of string type, which represents the text that is
to be created.

• After instantiating the Text class, you need to set value to this property using

the setText()method.

• You can also set the position (origin) of the text by specifying the values to the properties x and y

using their respective setter methods namely setX() and setY().

• In addition to the properties of the text like font, alignment, line spacing, text, etc. It also inherits

the basic shape node properties such as strokeFill, stroke, strokeWidth,
strokeType, etc.

32

JavaFX	Shapes	- Text

For	full	properties	and	method	description:	https://docs.oracle.com/javase/8/javafx/api/javafx/scene/text/Text.html

33

Java	Coordinate	System

(0, 0) X Axis

Y Axis

(x, y)

x

 y

Java

Coordinate

System

X Axis

Conventional

Coordinate
System

(0, 0)

Y Axis

34

Java	Coordinate	System

35

import javafx.application.Application;  

import javafx.scene.Group;  
import javafx.scene.Scene;  

import javafx.stage.Stage;  
import javafx.scene.text.Text;  

public class TextExample extends Application {  

@Override  
public void start(Stage stage) {  

Text text = new Text(); //Creating a Text object

text.setText("Hello how are you"); //Setting the text to be added.  
text.setX(50); //setting the position of the text  

text.setY(50); //setting the position of the text  
Group root = new Group(text); //Creating a Group object  

Scene scene = new Scene(root, 600, 300); //Creating a scene object  
stage.setTitle("Sample Application"); //Setting title to the Stage  
stage.setScene(scene); //Adding scene to the stage  

stage.show(); //Displaying the contents of the stage  
}  

public static void main(String args[]){  

launch(args);  
}  

}

JavaFX	Shapes	– Text	(Creating	a	Text	Node)

36

JavaFX	Text-Creating	a	Text	Node

37

JavaFX	Shapes	– Text	
(Position,	Font,	Stroke,	Color	and	decoration	of	the	the	Text)

• You can strike through the text using the method setStrikethrough(). This accepts a

Boolean value, pass the value true to this method to strike through the text.

• In the same way, you can underline a text by passing the value true to the

method setUnderLine()

• You can change the font size and color of the text using the setFont() method. This method
accepts an object of the Font class.

• The Text class also inherits the class Shape of the package. Therefore, you can use all the

method in javafx.scene.shape.Shape class to set the stroke and color to the text node

too.

• You can set the color to the text using the setFill() method of the Shape (inherited) class.

• Similarly, you can set the stroke color of the text using the method setStroke(). While the

width of the stroke can be set using the method setStrokeWidth()

38

JavaFX	Shapes	– Text	
(Position,	Font,	Stroke,	Color	and	decoration	of	the	the	Text)

import javafx.scene.text.Font;

import javafx.scene.text.FontPosture;
import javafx.scene.text.FontWeight;

...
Text text = new Text();//Creating a Text object
text.setText("Hello how are you"); //Setting the text to be added.

text.setX(50);//setting the text position

text.setY(130);

//setting the font

text.setFont(Font.font("verdana", FontWeight.BOLD, FontPosture.REGULAR, 20));

text.setFill(Color.BROWN);//Setting the color  

text.setStrokeWidth(1);//setting the Stork

text.setStroke(Color.BLUE);//Setting the stroke color  

text.setUnderline(true);//underlining the text

text.setStrikethrough(true);//Striking through the text  

...
39

JavaFX	Shapes	– Text	
(Position,	Font,	Stroke,	Color	and	decoration	of	the	the	Text)

40

JavaFX	Fonts

• The class named Font of the package javafx.scene.text is used to define the font for the

text. This class contains a static method named font().

• This method accepts four parameters namely:

• family − This is of a String type and represents the family of the font that we want to apply to
the text.

• weight − This property represents the weight of the font. It accepts 9 values, which are

− FontWeight.BLACK, FontWeight.BOLD, FontWeight.EXTRA_BOLD, FontWeight.EXTRA_LIGHT,
LIGHT, MEDIUM, NORMAL, SEMI_BOLD, THIN.

• posture − This property represents the font posture (regular or italic). It accepts two

values FontPosture.REGULAR and FontPosture.ITALIC.

• size − This property is of type double and it represents the size of the font.

text.setFont(Font.font("verdana", FontWeight.BOLD, FontPosture.REGULAR, 20));

41

JavaFX	Fonts

For	full	properties	and	method	description:	https://docs.oracle.com/javafx/2/api/javafx/scene/text/Font.html 42

JavaFX	Shapes	– Line

43

JavaFX	Shapes	– Line

For	full	properties	and	method	description:	https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Line.html

44

JavaFX	Shapes	– Line	(Creating	a	Line	Node)

import javafx.application.Application;

import javafx.scene.Group;
import javafx.scene.Scene;

import javafx.scene.shape.Line;
import javafx.stage.Stage;

public class LineExample extends Application {

@Override
public void start(Stage primaryStage) {

Line line = new Line();

line.setStartX(100.0f); //Setting the Properties of the Line
line.setStartY(140.0f);

line.setEndX(300.0f);
line.setEndY(140.0f);

Group root = new Group(line);
Scene scene = new Scene(root, 400, 300);
primaryStage.setTitle("Drawing Line"); // Set the stage title

primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

}

}
public static void main(String[] args) {launch(args);}

45

Note that:

Line class inherits the

Shape class which belongs to

the package:

javafx.scene.shape

For that, we can set the
color to the Line using

the method:

setFill()

Similarly, we can set the
stroke color of the Line

using the method:

setStroke()

While the width of the
stroke can be set using the
method:

setStrokeWidth()

JavaFX	Shapes	– Line	(Creating	a	Line	Node)

46

JavaFX	Shapes	– Rectangle

47

JavaFX	Shapes	– Rectangle

For	full	properties	and	method	description:	https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Rectangle.html

48

JavaFX	Shapes	– Rectangle	(Creating	a	Rectangle	Node)

import javafx.application.Application;

import javafx.scene.Group;
import javafx.scene.Scene;

import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class RectangleExample extends Application {

@Override
public void start(Stage primaryStage) {

Rectangle rectangle = new Rectangle();

rectangle.setX(100); //Setting the Properties of the Rectangle
rectangle.setY(100);

rectangle.setWidth(200);
rectangle.setHeight(100);

Group root = new Group(rectangle);
Scene scene = new Scene(root, 400, 300);
primaryStage.setTitle("Drawing Rectangle"); // Set the stage title

primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

}

}
public static void main(String[] args) {launch(args);}

49

Note that:

Rectangle class inherits

the Shape class which

belongs to the package:

javafx.scene.shape

For that, we can set the
color to the Rectangle

using the method:

setFill()

Similarly, we can set the
stroke color of the

Rectangle using the
method:

setStroke()

While the width of the
stroke can be set using the

method:

setStrokeWidth()

JavaFX	Shapes	– Rectangle	(Creating	a	Rectangle	Node)

50

JavaFX	Shapes	– Circle

51

JavaFX	Shapes	– Circle

For	full	properties	and	method	description:	https://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Circle.html

52

JavaFX	Shapes	– Circle	(Creating	a	Circle	Node)

import javafx.application.Application;

import javafx.scene.Group;
import javafx.scene.Scene;

import javafx.scene.shape.Circle;
import javafx.stage.Stage;

public class CircleExample extends Application {

@Override
public void start(Stage primaryStage) {

Circle circle = new Circle();

circle.setCenterX(200); //Setting the Properties of the Circle
circle.setCenterY(150);

circle.setRadius(50);
Group root = new Group(circle);

Scene scene = new Scene(root, 400, 300);
primaryStage.setTitle("Drawing Rectangle"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage

primaryStage.show(); // Display the stage
}

}
public static void main(String[] args) {launch(args);}

53

Note that:

Circle class inherits the

Shape class which belongs to

the package:

javafx.scene.shape

For that, we can set the
color to the Circle using

the method:

setFill()

Similarly, we can set the
stroke color of the Circle

using the method:

setStroke()

While the width of the
stroke can be set using the
method:

setStrokeWidth()

JavaFX	Shapes	– Circle	(Creating	a	Circle	Node)

54

JavaFX	Image

• You can load and modify images using the classes provided by JavaFX in the

package javafx.scene.image. JavaFX supports the image formats like Bmp, Gif, Jpeg, Png.

• You can load an image in JavaFX by instantiating the class named Image of the
package javafx.scene.image.

• To the constructor of the class, you have to pass either of the following:

• An InputStream object of the image to be loaded or,

• A string variable holding the URL for the image.

• After loading the image, you can set the view for the image by instantiating the ImageView class
and passing the image to its constructor.

55

The	Image	Class

For	full	properties	and	method	description:	https://docs.oracle.com/javase/8/javafx/api/javafx/scene/image/Image.html

56

The	ImageView Class

For	full	properties	and	method	description:	https://docs.oracle.com/javase/8/javafx/api/javafx/scene/image/ImageView.html

57

JavaFX	Image

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.stage.Stage;
public class ImageExample extends Application {

@Override
public void start(Stage stage){  

Image image = new Image("https://encrypted-
tbn0.gstatic.com/images?q=tbn:ANd9GcQs1XBoCplUS1v2gkTinxGVh20QnCy-DWy8lyQDTvt-ldf0WINZ");

ImageView imageView = new ImageView(image);//Setting the image view  
imageView.setX(50); //Setting the image position
imageView.setY(25);
imageView.setFitHeight(200); //setting the fit height and width of the image view
imageView.setFitWidth(200);
imageView.setPreserveRatio(true); //Setting the preserve ratio of the image view  
Group root = new Group(imageView); //Creating a Group object  
Scene scene = new Scene(root, 250, 250);//Creating a scene object  
stage.setTitle("Image Example"); //Setting title to the Stage
stage.setScene(scene); //Adding scene to the stage
stage.show();//Displaying the contents of the stage

}
public static void main(String args[]){launch(args);}} 58

JavaFX	Image

59

JavaFX	Colors

• To apply colors to an application, JavaFX provides various classes in the

package javafx.scene.paint package. This package contains an abstract class named Paint
and it is the base class of all the classes that are used to apply colors.

• Using these classes, you can apply colors in the following patterns −

• Uniform − In this pattern, color is applied uniformly throughout node.

• Image Pattern − This lets you to fill the region of the node with an image pattern.

• Gradient − In this pattern, the color applied to the node varies from one point to the other. It

has two kinds of gradients namely Linear Gradient and Radial Gradient.

• All those node classes to which you can apply color such as Shape and Text (including Scene), have

methods named setFill() and setStroke(). These will help to set the color values of the
nodes and their strokes respectively.

60

JavaFX	Colors

For	full	properties	and	method	description:	https://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/Color.html

61

JavaFX	Colors	
- Applying	Color	to	the	Nodes

• To set uniform color pattern to the nodes, you need to pass an object of the class color to

the setFill(), setStroke()methods as follows:

//Setting color to the text
Color color = new Color.BEIGE
text.setFill(color);

//Setting color to the stroke
Color color = new Color.DARKSLATEBLUE
circle.setStroke(color);

• In the above code block, we are using the static variables of the color class to create a color object.

62

JavaFX	Colors	
- Applying	Color	to	the	Nodes

• In	the	same	way,	you	can	also	use	the	RGB	values	or	HSB	standard	of	coloring	or	web	hash	codes	of	

colors.

• Example:

//creating color object by passing RGB values
Color c = Color.rgb(0,0,255);

//creating color object by passing HSB values
Color c = Color.hsb(270,1.0,1.0);

//creating color object by passing the hash code for web
Color c = Color.web("0x0000FF",1.0);

63

JavaFX	Colors	
- Applying	Color	to	the	Nodes	(Example)
import javafx.application.Application;

import javafx.scene.Group;
import javafx.scene.Scene;

import javafx.scene.paint.Color;
import javafx.stage.Stage;

import javafx.scene.shape.Circle;
import javafx.scene.text.Font;

import javafx.scene.text.Text;

public class ColorExample extends Application {

@Override
public void start(Stage stage) {

Circle circle = new Circle();//Drawing a Circle
circle.setCenterX(300.0f); //Setting the properties of the circle

circle.setCenterY(150.0f);
circle.setRadius(90.0f);
circle.setFill(Color.DARKRED);//Setting color to the circle

circle.setStrokeWidth(3); //Setting the stroke width
circle.setStroke(Color.DARKSLATEBLUE); //Setting color to the stroke

.

.

.

64

JavaFX	Colors	
- Applying	Color	to	the	Nodes	(Example)

Text text = new Text("This is a colored circle");//Drawing a text

text.setFont(Font.font("Edwardian Script ITC", 50));//Setting the font of the text
text.setX(40);//Setting the position of the text

text.setY(50);
text.setFill(Color.BEIGE);//Setting color to the text

text.setStrokeWidth(2);
text.setStroke(Color.DARKSLATEBLUE);

Group root = new Group(circle, text); //Creating a Group object
Scene scene = new Scene(root, 600, 300); //Creating a scene object

stage.setTitle("Color Example"); //Setting title to the Stage
stage.setScene(scene); //Adding scene to the stage

stage.show();//Displaying the contents of the stage
}

public static void main(String args[]){
launch(args);

}
}

65

JavaFX	Colors	
- Applying	Color	to	the	Nodes	(Example)

66

JavaFX	Colors	
- Applying	Image	Pattern	to	the	Nodes

• To apply an image pattern to the nodes, instantiate the ImagePattern class and pass its object

to the setFill(), setStroke()methods.

• The constructor of this class accepts six parameters namely:

• Image − The object of the image using which you want to create the pattern.

• x and y − Double variables representing the (x, y) coordinates of origin of the anchor rectangle.

• height and width − Double variables representing the height and width of the image that is
used to create a pattern.

• isProportional − This is a Boolean Variable; on setting this property to true, the start and end

locations are set to be proportional.

• Example:

ImagePattern example = new ImagePattern(URL, 20, 20, 40, 40, false);

67

JavaFX	Colors	
- Applying	Image	Pattern	to	the	Nodes	Example

• Same	as	the	previous	example	except	for	what	you	use	as	parameters	in	setFill()method.

//Setting the image pattern  
String link ="https://encrypted-
tbn1.gstatic.com/images?q=tbn:ANd9GcRQub4GvEezKMsiIf67UrOxSzQuQ9zl5ysnjRn87VOC8tAdgmAJjcwZ2q
M";

Image image = new Image(link);

ImagePattern pattern = new ImagePattern(image,20,20,40,40,false);

//Setting the image pattern to the circle and text
circle.setFill(pattern);

text.setFill(pattern);

68

JavaFX	Colors	
- Applying	Image	Pattern	to	the	Nodes	Example

69

