MATH203 Calculus

Dr. Bandar Al-Mohsin

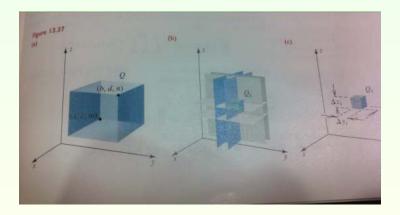
School of Mathematics, KSU

Definition

If f is a continuous function defined over a bounded solid Q, then the ${\bf triple}\ {\bf integral}\ {\bf of}\ f\ {\bf over}\ Q$ is defined as

$$\iiint_Q f(x, y, z) \mathrm{d}V = \lim_{\|P\| \to 0} \sum_{k=1}^n f(x_k, y_k, z_k) \Delta V_k \tag{1}$$

provided the limit exists, where Q_k is the k-th subregion of Q, V_k is the volume of Q_n , (x_k, y_k, z_k) is a point, ||P|| is length of the longest diagonal of all the Q_k .



Application of a triple integral is the volume of the solid region Q is given by

Volume of
$$Q = \iiint_Q \mathrm{d} V$$

Example:

Evaluate the iterated integral $\iiint_Q dz dx dy$., where $Q = \{(x, y, z) : -1 \leqslant x \leqslant 1, 3 \leqslant y \leqslant 4, 0 \leqslant z \leqslant 2\}.$

Note 1:

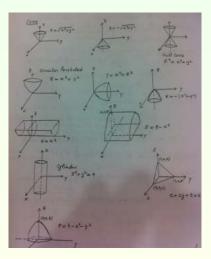
To evaluate a triple integral in order dzdydx, hold both x and y constant for inner most integral, then hold x constant for the second integration. **Note 2:**

The symbol on the right-hand side of the equation is an iterated triple integral.

Note 3:

A triple integral $\iiint_Q dV$ can be evaluated in six different orders, namely dV = dzdydx = dydxdz = dxdzdy = dzdxdzy = dxdydz = dydzdx.

Some important graphs

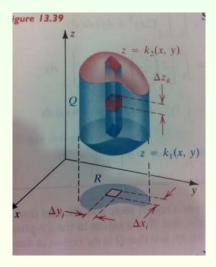


Evaluation theorem:

Triple integrals can be defined over a region more complicated han a rectangular box. Suppose that R is a region in the xy-plane that can be divided into R_x and R_y regions and that Q is the region in three dimensions defined by

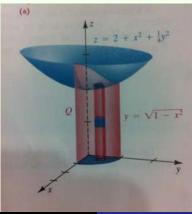
 $Q = \{(x, y, z) : (x, y) \text{is in } R \text{ and } k_1(x, y) \leqslant z \leqslant k_2(x, y)\}$, where k_1 and k_2 are continuous functions, then triple integral defines as

$$\iiint_{Q} f(x, y, z) \mathrm{d}V = \iint_{R} \left[\int_{k_1(x, y)}^{k_2(x, y)} f(x, y, z) \mathrm{d}z \right] \mathrm{d}A \tag{2}$$



Example 1

Express the iterated integral $\iiint_Q dV$, if Q is the region in the first octant bounded by the coordinate plane, paraboloid $z = 2 + x^2 + \frac{1}{4}y^2$ and the cylinder $x^2 + y^2 = 1$.

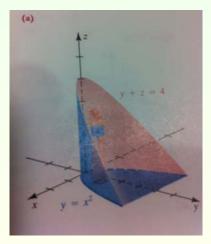


Dr. Bandar Al-Mohsin

MATH203 Calculus

Example 2

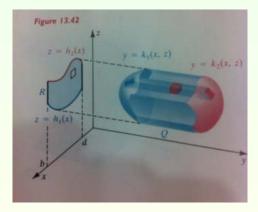
Find the volume V of the solid that is bounded by cylinder $y = x^2$ and by the plane y + z = 4 and z = 0.



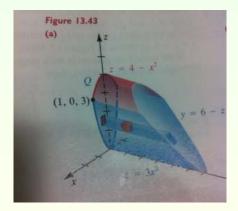
Evaluation theorem:

Let f be a continuous functions on the solid region Q defined by $b\leqslant x\leqslant d,\ h_1\leqslant y\leqslant h_2$ and $k_1\leqslant z\leqslant k_2,$ where h_1,h_2,k_1 and k_2 are continuous functions, then

$$\iiint_{Q} f(x,y,z) dV = \int_{b}^{d} \int_{h_{1}(x,y)}^{h_{2}(x,y)} \int_{k_{1}(x,y)}^{k_{2}(x,y)} f(x,y,z) dy dz dx$$
(3)



Example 3 Find the volume of the region Q bounded by graphs of $z = 3x^2$, $z = 4 - x^2$, y = 0 and z + y = 6.



Definition of mass

 $m=\delta V,$ where δ is mass density and V is Volume.

Mass of Solid

$$m = \iiint_Q \delta(x, y, z) \mathrm{d}V.$$

Mass of Lamina

$$m = \iint_R \delta(x, y) \mathrm{d}A.$$

Examples

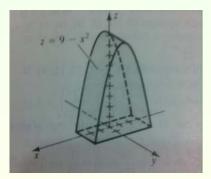
(1) A lamina having area mass density $\delta(x, y) = y^2$ and has the shape of the region bounded by the graphs of $y = e^{-x}$, x = 0, x = 1, y = 0. Set up an iterated double integral that can be used to find the mass of the lamina.

(2) A solid having density $\delta(x, y, z) = z + 1$ has the shape of the region bounded by the graphs of $z = 4 - x^2 - y^2$, z = 0. set up an iterated triple integral that can be used to find the mass of the solid.

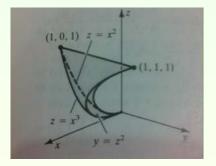
(3) A solid having density $\delta(x, y, z) = x^2 + y^2$ has the shape of the region bounded by the graphs of x + 2y + z = 4, x = 0, y = 0, z = 0. set up an iterated triple integral that can be used to find the mass of the solid.

Examples

(1) Sketch and find the volume of the region Q bounded by graphs of z = 9 - x², z = 0, y = -1 and y = 2.
(2) Sketch and find the volume of the region Q bounded by graphs of z = x², z = x³, y = z² and y = 0.
Sketch 1



Sketch 2

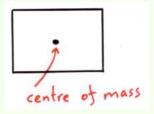


Definition

Let L be a lamina that has the shape of region R in the xy-plane. If the area mass density at (x, y) is $\delta(x, y)$ and if δ is continuous on R, then the mass m, the moments M_x and M_y , and the center of mass $(\overline{x},\overline{y})$ are (i) $m = \iint_{R} \delta(x, y) dA.$ (ii) $M_x = \iint_R y \delta(x, y) dA$, $M_y = \iint_R x \delta(x, y) dA$ (iii) $\overline{x} = \frac{M_y}{m} = \frac{\iint_R x \delta(x, y) dA}{\iint_R \delta(x, y) dA}$, $\overline{y} = \frac{M_x}{m} = \frac{\iint_R y \delta(x, y) dA}{\iint_R \delta(x, y) dA}$.

Center of mass and Moment of inertia

Note: If L is homogeneous with constant mass density, the center of mass is also called the centroid



Moments of inertia of a Lamina

$$\begin{split} &I_x = \iint_R y^2 \delta(x,y) \mathrm{d}A \text{ about the } x - \mathrm{axis.} \\ &I_y = \iint_R x^2 \delta(x,y) \mathrm{d}A \text{ about the } y - \mathrm{axis.} \\ &I_O = I_x + I_y = \iint_R (x^2 + y^2) \delta(x,y) \mathrm{d}A \text{ about the origin} \end{split}$$

Moments and Center of mass in 3D

$$\begin{aligned} \text{(i)} \ m &= \iiint_Q \delta(x, y, z) \mathrm{d}V. \\ \text{(ii)} \ M_{xy} &= \iiint_Q z \delta(x, y, z) \mathrm{d}V, \ M_{xz} &= \iiint_Q y \delta(x, y, z) \mathrm{d}V \\ M_{yz} &= \iiint_Q x \delta(x, y, z) \mathrm{d}V \\ \text{(iii)} \ \overline{x} &= \frac{M_{yz}}{m} = \frac{\iiint_Q x \delta(x, y, z) \mathrm{d}V}{\prod_Q \delta(x, y, z) \mathrm{d}V}, \ \overline{y} &= \frac{M_{xz}}{m} = \frac{\iiint_Q y \delta(x, y, z) \mathrm{d}V}{\prod_Q \delta(x, y, z) \mathrm{d}V}. \\ \overline{z} &= \frac{M_{xy}}{m} = \frac{\iiint_Q z \delta(x, y, z) \mathrm{d}V}{\prod_Q \delta(x, y, z) \mathrm{d}V}. \end{aligned}$$

Note: If L is homogeneous with constant mass density, the center of mass is also called the centroid

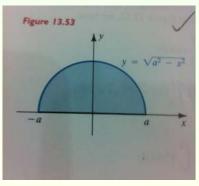
Moments of inertia of solids

$$\begin{split} I_z &= \iiint_Q (x^2 + y^2) \delta(x, y, z) \mathrm{d}V \text{ moment of inertia about the } z - \mathrm{axis.} \\ I_x &= \iiint_Q (y^2 + z^2) \delta(x, y, z) \mathrm{d}V \text{ moment of inertia about the } x - \mathrm{axis.} \\ I_y &= \iiint_R (x^2 + z^2) \delta(x, y, z) \mathrm{d}V \text{ moment of inertia about the } y - \mathrm{axis.} \end{split}$$

Examples

(1) A lamina having area mass density $\delta(x, y) = kx$ and has the shape of the region R in the xy-plane bounded by the parabola $x = y^2$ and the line x = 4. Find the center of mass.

(2) A lamina having area mass density $\delta(x,y) = ky$ and has the semicirclar illustrated in Figure. Find the moment of inertia with respect to the x-axis.



Examples

(3) Set up an iterated integral that can be used to find the center of mass of the solid Q bounded by the paraboloid $x = y^2 + z^2$ and the palne x = 4 and density $\delta(x, y, z) = x^2 + y^2$. (4) Let Q be the solid in the first octant bounded by the coordinates planes and the graphs of $z = 9 - x^2$ and 2x + y = 6. Set up iterated integrals that can be used to find the centroid, find the centroid, find the moment of inertia with respect to the z-axis.