
ALGORITHMS & DATA STRUCTURES – I

COMP 221

Abstract Data Type & ARRAYS

Abstract Data Type (ADT)

Def.

e.g. whole numbers (integers) and arithmetic operators for addition,

subtraction, multiplication and division.

e.g. Seats for TFA

Basic operations: find empty seat, reserve a seat,

cancel a seat assignment

Why "abstract?"

Data, operations, and relations are studied

independent of implementation.

What not how is the focus.

a collection of related data items

together with

an associated set of operations

ADT
You drive the car without know how the engine car work
and daily you use many items without know how they
work, separating the implementation details is called
abstraction.

Abstraction focuses on what the engine does and not how
it works.

Abstract Data type(ADT): A data type that specifies the
logical properties without the implementation details.

Implementation of an ADT
Def. Consists of

storage structures (aka data structures)

to store the data items

and

algorithms for the basic operations.

The storage structures/data structures used in implementations are provided

in a language (primitive or built-in) or are built from the language constructs

(user-defined).

In either case, successful software design uses data abstraction:

Separating the definition of a data type from its implementation.

C-Style Data Structures: Arrays

Defn of an array as an ADT:

An ordered set (sequence) with a fixed number of elements,

all of the same type,

Properties:

• Ordered so there is a first element, a second one, etc.

• Fixed number of elements — fixed capacity

• Elements must be the same type (and size);

 use arrays only for homogeneous data sets.

where the basic operation is

direct access to each element in the array so values can be

retrieved from or stored in this element.

• Direct access: Access an element by giving its location

— the time to access each element is the same for all elements,

regardless of position.

— in contrast to sequential access (where to access an

element, one must first access all those that precede it.)

Declaring arrays in C++

where

element_type is any type

array_name is the name of the array — any valid identifier

CAPACITY (a positive integer constant) is the number of elements

in the array

score[0]

score[1]

score[2]

score[3]

score[99]

.

.

.

.

.

.

Better to use a named constant to specify the array capacity:

const int CAPACITY = 100;

double score[CAPACITY];

Can use typedef with array declarations; e.g.,

const int CAPACITY = 100;

typedef double ScoresArray[CAPACITY];

ScoresArray score;

element_type array_name[CAPACITY];

e.g., double score[100];

The elements (or positions) of the array are indexed 0, 1, 2, . . ., CAPACITY - 1.

Can't input the capacity

The compiler reserves a block of consecutive memory locations, enough to hold CAPACITY values

of type element_type.

indices numbered 0, 1, 2, . . ., CAPACITY - 1

How well does C/C++ implement an array ADT?

As an ADT In C++

ordered

fixed size

same type elements

direct access

element_type is the type of elements

CAPACITY specifies the capacity of the array

subscript operator []

Subscript operator

[] is an actual operator and not simply a notation/punctuation as in some other languages.

Its two operands are an array variable and an integer index (or subscript) and is written

array_name[i]

Here i is an integer expression with 0 < i < CAPACITY – 1.

[] returns the address of the element in location i in array_name; so

array_name[i]is a variable, called an indexed (or subscripted) variable,

whose type is the specified element_type of the array.

This means that it can be used on the left side of an assignment, in input statements, etc. to store a

value in a specified location in the array. For example:

// Zero out all the elements of score

for (int i = 0; i < CAPACITY; i++)

score[i] = 0.0;

// Read values into the first numScores elements of score

for (int i = 0; i < numScores; i++)

cin >> score[i];

// Display values stored in the first numScores elements

for (int i = 0; i < numScores; i++)

cout << score[i] << endl;

Also, it

can have

an index

an array literal

Array Initialization

Example:

double rate[5] = {0.11, 0.13, 0.16, 0.18, 0.21};

Note 1: If fewer values supplied than array's capacity, remaining elements assigned 0.

double rate[5] = {0.11, 0.13, 0.16};

Note 2: It is an error if more values are supplied than the declared size of the array.

How this error is handled, however, will vary from one compiler to another.

Note 3: If no values supplied, array elements are undefined (i.e., garbage values).

rate

 0 1 2 3 4

0.11 0.13 0.16 0 0

rate

 0 1 2 3 4

0.11 0.13 0.16 0.18 0.21

What’s
an easy
way to
initialize
an array
to all
zeros?

In C++, arrays can be initialized when they are declared.

Numeric arrays:

element_type num_array[CAPACITY] = {list_of_initial_values};

Note 1: If fewer values are supplied than the declared size of the array,

the zeroes used to fill uninitialized elements are interpreted as

the null character '\0' whose ASCII code is 0.

const int NAME_LENGTH = 10;

char collegeName[NAME_LENGTH]={'C', 'a', 'l', 'v', 'i', 'n'};

vowel

0 1 2 3 4

A E I O U

char vowel[5] = {'A', 'E', 'I', 'O', 'U'};

Character arrays:

Character arrays may be initialized in the same manner as numeric arrays.

declares vowel to be an array of 5 characters and initializes it as follows:

collegeName

0 1 2 3 4 5 6 7 8 9

C a l v i n \0 \0 \0 \0

Note 2: Character arrays may be initialized using string constants. For example,

the following declaration is equivalent to the preceding:

char collegeName[NAME_LENGTH] = "Calvin";

Note 3: The null character '\0' (ASCII code is 0) is used

as an end-of-string mark.

Thus, character arrays used to store strings should be declared large enough to store the

null character. If it is not, one cannot expect some of the string functions and operations

to work correctly.

If a character array is initialized with a string constant, the

end-of-string mark is added automatically, provided there is room for it.

char collegeName[7] = {'C', 'a', 'l', 'v', 'i', 'n', '\0'};

char collegeName[7] = "Calvin";

Initializations with no array size specified

The array capacity may be omitted in an array declaration with an initializer list.

In this case, the number of elements in the array will be

the number of values in the initializer list.

Example:

double rate[] = {0.11, 0.13, 0.16};

rate

 0 1 2

0.11 0.13 0.16

Note: This explains the brackets in constant declarations such as

const char IN_FILE[] = "employee.dat";

Addresses
When an array is declared, the address of the first byte (or word) in the block of memory

associated with the array is called the base address of the array.

Each array reference must be translated into an offset from this base address.

For example, if each element of array score will be stored in 8 bytes and the base address

of score is 0x1396. A statement such as

cout << score[3] << endl;

requires that array reference score[3]

be translated into a memory address:

0x1396 + 3 * (sizeof double)

= 0x1396 + 3 * 8

= 0x13ae

The contents of the memory word with this address 0x13ae can

then be retrieved and displayed.

An address translation like this is carried out each time an

array element is accessed.

score[3]

[0]

[1]

[2]

[3]

[99]

.

.

.

.

.

.

score 0x1396

0x13ae

The value of array_name is actually the base address ofarray_name

array_name + index is the address of array_name[index].

An array reference array_name[index]

is equivalent to

For example, the following statements are equivalent:

cout << score[3] << endl;

cout << *(score + 3) << endl;

* is the dereferencing operator

*ref returns the contents of the memory location with address ref

*(array_name + index)

C-Style Multidimensional Arrays

Example: A table of test scores for several different students on

several different tests.

 Test 1 Test 2 Test 3 Test 4
Student 1 99.0 93.5 89.0 91.0

Student 2 66.0 68.0 84.5 82.0

Student 3 88.5 78.5 70.0 65.0

: : : : :
: : : : :

Student-n 100.0 99.5 100.0 99.0

For storage and processing, use a two-dimensional array.

p.52

Declaring Two-Dimensional Arrays

Standard form of declaration:

element_type array_name[NUM_ROWS][NUM_COLUMNS];

Example:

const int NUM_ROWS = 30,

NUM_COLUMNS = 4;

double scoresTable[NUM_ROWS][NUM_COLUMNS];

Initialization
 List the initial values in braces, row by row;

 May use internal braces for each row to improve readability.

Example:
double rates[2][3] = {{0.50, 0.55, 0.53}, // first row

{0.63, 0.58, 0.55}}; // second row

or

typedef double TwoDimArray [NUM_ROWS][NUM_COLUMNS];

TwoDimArray scoresTable;

...

[0]
[1]
[2]
[3]

[29]

[0] [[1] [2] [3]

Processing Two-Dimensional Arrays

Remember: Rows (and) columns are numbered from zero!!

Use doubly-indexed variables:

scoresTable[2][3] is the entry in row 2 and column 3

row index column index

Use nested loops to vary the two indices, most often in a rowwise manner.

int numStudents, numTests, i, j;

cout << "# students and # of tests? ";

cin >> numStudents >> numTests;

cout << "Enter test scores for students\n";

for (i = 0; i < numStudents; i++)

{

cout << '#' << i + 1 << ':';

for (j = 0; j < numTests; j++)

cin >> scoresTable[i][j];

}

Counting

from 0

THANK YOU

