COMPLEXITY

ALGORITHMS & DATA STRUCTURES — 1
COMP 221

e
Algorithm Efficiency

What to measure?
Space utilization: ~amount of memory required

¢ Time efﬁciency: amount of time required to process the data

Depends on many factors:
* size of input
* speed of machine
* quality of source code

* quality of compiler

These factors vary from one machine/compiler (platform) to another

—> Count the number of times instructions are executed

So, measure computing time as
T(n) = computing time of an algorithrn for input of size n

= number of times the instructions are executed

4 h

Example: Calculating the Mean

/ & Algorithm to find the mean of n real numbers.

Receive: integer n>= 1 and an array x[0], . . ., x[n—1] of real numbers
Return: The mean of x[0], .. ., x[n—1]
___ */
1. Initialize sum to O. 1
2. Initialize index variable i to O. 1
3. While i < n do the following: n+1
4. a. Add x[i] to sum. n
5 b. Increment i by 1. n
6. Calculate and return mean = sum / n . — 1
T(m)= 3n+4

4 ™
Big Oh Notation

The computing time of an algorithm on input of size n, T(n), is said to have order of magnitude f(n),
written T(n) is O(f(n))
if there is some constant C such that

T(n) < Cf(n) forall sufficiently large values of n.

Another way of saying this:
The complexity of the algorithm is O(f(n)).

f(n) is usually simple:

n, n2, n3, ...
Example: For the Mean—CalculationAlgorithm: . |2n
) ngn
T(n)is O(n) nlog,n
log,logson

_

Note that constants and multiplicative factors are ignored.

T(n) is also O(n?), O(n?), etc., but use smallest f(n) = most info

_ /

: Worst-case Analysis

The arrangement of the input items may affect the computing time.

How then to measure performance?

best case —not very informative
average - too difficult to calculate

WOorst case - usual measure

/ « Linear search of the list a[0], . .., a[n — 1].
Receive: Aninteger n an array of n elements and item
Return: found = true and loc = position of item if the search is

successful; otherwise, found is false. */

1. found = false.

2. loc = 0.

3. While (loc < n && !found)

4. It item = a[loc] found = true // item found

5. Else Increment Joc by 1 / / keep searching
Worst case: Item not in the list: T{(n) is O(n)

Average case (assume equal distribution of values)is O(n)

N

Binary Search

/* Binary search of the list a[0], . . . , a[n — 1] in which the items are in
ascending order.
Receive:integer n and an array of n elements and item.
Return: found = true and loc = position of item if the search successful
otherwise, found is false. */

1. found = false.

2. first = Q0.
3.last = n—1.
4. While (first <= last && !found) == p. 255

5. Calculate loc = (first + last) / 2.

6. It item < a[loc] then
7. last = loc — 1. / / search first half
8. Else if item > a[loc] then
9. Sfirst = loc + 1. / / search last half
10. Else
found = true. / / item found
Worst case: Item not in the list: Tg(n) = O(logyn)

Makes sense: each pass cuts search space in ha!ﬂ

N

THANK YOU

?

