COMPLEXITY

ALGORITHMS & DATA STRUCTURES – I COMP 221

Algorithm Efficiency

What to measure?

Space utilization: amount of memory required *☆ Time efficiency*: amount of time required to process the data

Depends on many factors:

- size of input
- speed of machine
- quality of source code
- quality of compiler

These factors vary from one machine/compiler (platform) to another

 \Rightarrow Count the number of times instructions are executed

So, measure computing time as

T(n) = computing time of an algorithm for input of size n = number of times the instructions are executed

Example: Calculating the Mean

/* Algorithm to find the mean of *n* real numbers. Receive: integer *n* >= 1 and an array *x*[0], . . . , *x*[*n*-1] of real numbers Return: The mean of *x*[0], . . . , *x*[*n*-1]

1. Initialize sum to 0.12. Initialize index variable i to 0.13. While i < n do the following:n + 14. a. Add x[i] to sum.n5. b. Increment i by 1.n6. Calculate and return mean = sum / n.n

T(n) = 3n + 4

p. 350

Big Oh Notation

The computing time of an algorithm on input of size n, T(n), is said to have order of magnitude f(n), written T(n) is O(f(n))if there is some constant C such that $T(n) \leq C \cdot f(n)$ for all sufficiently large values of n. Another way of saying this:

> f(n) is usually simple: n, n², n³, ... 2ⁿ

> > 1, $\log_2 n$ n $\log_2 n$

log₂log₂n

```
The complexity of the algorithm is O(f(n)).
```

Example: For the Mean-Calculation Algorithm:

T(n) is O(n)

Note that constants and multiplicative factors are ignored.

T(n) is also $O(n^2)$, $O(n^3)$, etc., but use smallest $f(n) \Longrightarrow most info$

Worst-case Analysis

The arrangement of the input items may affect the computing time. How then to measure performance?

```
best case – not very informative
       average - too difficult to calculate
       worst case - usual measure
/* Linear search of the list a[0], \ldots, a[n-1].
       Receive: An integer n an array of n elements and item
       Return: found = true and loc = position of item if the search is
                 successful; otherwise, found is false. */
1. found = false.
2. loc = 0.
3. While (loc < n \&\& ! found)
       If item = a[loc] found = true
                                                             // item found
4.
                                Increment loc by 1
5.
       Else
                                                             // keep searching
                                                      O(n)
Worst case: Item not in the list: T_{I}(n) is
```

Average case (assume equal distribution of values) is

O(n)

Binary Search

/* Binary search of the list $a[0], \ldots, a[n-1]$ in which the items are in ascending order. Receive: integer *n* and an array of *n* elements and *item*. Return: *found* = true and *loc* = position of *item* if the search successful otherwise, *found* is false. */ 1. found = false. 2. *first* = 0. 3. last = n - 1. 4. While (first $\leq = last \&\& ! found$) p. 255 Calculate loc = (first + last) / 2. 5. 6. If *item* $\leq a[loc]$ then last = loc - 1. // search first half 7. 8. Else if *item* > a[loc] then // search last half 9. first = loc + 1. 10. Else // item found found = true.Worst case: Item not in the list: $T_B(n) =$ $O(\log_2 n)$ Makes sense: each pass cuts search space in half!

