
ALGORITHMS & DATA STRUCTURES – I

COMP 221

COMPLEXITY

2

Algorithm Efficiency

These factors vary from one machine/compiler (platform) to another

 Count the number of times instructions are executed

So, measure computing time as

T(n) = computing time of an algorithm for input of size n

= number of times the instructions are executed

What to measure?

Space utilization: amount of memory required

Time efficiency: amount of time required to process the data

Depends on many factors:

• size of input

• speed of machine

• quality of source code

• quality of compiler

3

Example: Calculating the Mean
/* Algorithm to find the mean of n real numbers.

Receive: integer n >= 1 and an array x[0], . . . , x[n–1] of real numbers
Return: The mean of x[0], . . . , x[n–1]

---*/

1. Initialize sum to 0.

2. Initialize index variable i to 0.

3. While i < n do the following:

4. a. Add x[i] to sum.

5. b. Increment i by 1.

6. Calculate and return mean = sum / n .

T(n) = 3n + 4

1

1

n+1

n

n

1

p. 350

4

Big Oh Notation
The computing time of an algorithm on input of size n, T(n), is said to have order of magnitude f(n),

written T(n) is O(f(n))

if there is some constant C such that

T(n) < C.f(n) for all sufficiently large values of n.

Another way of saying this:

The complexity of the algorithm is O(f(n)).

O(n)

Note that constants and multiplicative factors are ignored.

Example: For the Mean-Calculation Algorithm:

T(n) is

f(n) is usually simple:

n, n2, n3, ...

2n

1, log2n

n log2n

log2log2n

T(n) is also O(n2), O(n3), etc., but use smallest f(n) most info

5

Worst-case Analysis
The arrangement of the input items may affect the computing time.

How then to measure performance?

best case – not very informative

average - too difficult to calculate

worst case - usual measure

/* Linear search of the list a[0], . . . , a[n – 1].

Receive: An integer n an array of n elements and item

Return: found = true and loc = position of item if the search is

successful; otherwise, found is false. */

1. found = false.

2. loc = 0.

3. While (loc < n && !found)

4. If item = a[loc] found = true // item found

5. Else Increment loc by 1 // keep searching

Worst case: Item not in the list: TL(n) is O(n)

O(n)Average case (assume equal distribution of values) is

6

Binary Search

O(log2n)

/* Binary search of the list a[0], . . . , a[n – 1] in which the items are in

ascending order.

Receive:integer n and an array of n elements and item.

Return: found = true and loc = position of item if the search successful

otherwise, found is false. */

1. found = false.

2. first = 0.

3. last = n – 1.

4. While (first <= last && !found)

5. Calculate loc = (first + last) / 2.

6. If item < a[loc] then

7. last = loc – 1. // search first half

8. Else if item > a[loc] then

9. first = loc + 1. // search last half

10. Else

found = true. // item found

Worst case: Item not in the list: TB(n) =

Makes sense: each pass cuts search space in half!

p. 255

THANK YOU

