
ALGORITHMS & DATA STRUCTURES – I

COMP 221

RECURSION

2

Recursion

A very old idea, with its roots in mathematical induction. It always has:

 An anchor (or base or trivial) case

 An inductive case

So, a function is said to be defined recursively if its definition consists of

 An anchor or base case in which the function’s value is defined for

one

or more values of the parameters

 An inductive or recursive step in which the function’s value (or

action)

for the current parameter values is defined in terms of previously

defined function values (or actions) and/or parameter values.

Example: Power Function

 x0 = 1 (the anchor or base case)

 For n > 0 xn = x * x n-1 (the inductive or recursive case)

Power Function

Since the value of 30 is given, we can now backtrack to find the

value of 31 and so on.

Recursive Calls to the Power Function

Recursive Calls to the Power Function

Example: Factorials

 Base case: 0! = 1

 Inductive case: n! = n*(n-1)!

int Factorial(int n)

{ if (n == 0)

return 1;

else

return n * Factorial(n - 1);

}

T(n) = O(n)

Factorial

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

call

call

call

call

call return 1

return 1 * 1 = 1

return 2 * 1 = 2

return 3 * 2 = 6

return 4 * 6 = 24 Final Result

9

However, many common textbook examples of recursion are tail-

recursive, i.e. the last statement in the recursive function is a recursive

invocation.

Tail-recursive functions can be written (much) more efficiently using a

loop.

Tail recursive functions are often said to “return the value of the last

recursive call as the value of the function”

Comments on Recursion

Binary Recursion

 When an algorithm makes two recursive calls we say that it uses

binary recursion.

 Fibonacci numbers are recursively defined as follows:

F0 = 0

F1 = 1;

Fi = Fi-1 + Fi-2 for i > 1

Fibonacci Numbers

Algorithm Fib(n)

Input: Nonnegative integer n.
Output: The nth Fibonacci number Fn.
unsigned fib(unsigned n)

{

if (n <= 2)

return 1; // anchor case

// else

return fib(n - 1) + fib(n - 2); // inductive case (n > 2)

}

Recursive Trace

5

4 3

3 2 2 1

2 1 1 0 1 0

1

2

1

1 0

1

2

3

5

Recursion Tree

14

// Fibonacci numbers

int F(unsigned n)

{ // recursive, expensive!

if (n < 3)

return 1;

else

return F(n –1) + F(n - 2);

}

int F(unsigned n)

{ // iterative, cheaper

int fib1 = 1, fib2 = 1;

for (int i = 3; i <= n; i++)

{

int fib3 = fib1 + fib2;

fib1 = fib2;

fib2 = fib3;

}

return fib2;

}

More complicated recursive functions are sometimes replaced by iterative functions that use

a stack to store the recursive calls. (See Section 7.3)

Iterative: O(n)

Recursive: O(1.7n)

15

// Counting the number of digits in a positive integer

int F(int n, int count)

{ // recursive, expensive!

if (n < 10)

return 1 + count;

else

return F(n/10, ++count);

}

int F(int n)

{ // iterative, cheaper

int count = 1;

while (n >= 10)

{

count++;

n /= 10;

}

return count;

}

16

Computing times of recursive functions

Have to solve a recurrence relation.

// Towers of Hanoi

void Move(int n, char source, char destination, char spare)

{

if (n <= 1) // anchor (base) case

cout << "Move the top disk from " << source

<< " to " << destination << endl;

else

{ // inductive case

Move(n-1, source, spare, destination);

Move(1, source, destination, spare);

Move(n-1, spare, destination, source);

}

}

T(n) = O(2
n

)

In emacs/xemacs:

Esc-n Esc-x hanoi

THANK YOU

