RECURSION

ALGORITHMS & DATA STRUCTURES — 1
COMP 221

4 |
Recursion

A very old idea, with its roots in mathematical induction. It always has:
¢ An anchor (or base or trivial) case

¢ An inductive case

So, a function is said to be defined recursively if its definition consists of
¢ An anchor or base case in which the function’s value is defined for
one
or more values of the parameters
¢ An inductive or recursive step in which the function’s value (or
action)
for the current parameter values is defined in terms of previously

defined function values (or actions) and/or parameter values.

Example: Power Function

e x0 =1 (the anchor or base case)

e Forn>0 x"=x*x"1 (theinductive or recursive case)

3° =3 x 3*
3t =13 x 33
%3—3x32
JS’E—B:H:?!-‘
¥=3xf

Power Function

Since the value of 30 is given, we can now backtrack to find the

value of 3! and so on.

PF=3 x3*=13 x 81 =243

l S~

=3 x3=3 x27.=81

szi* =3 X 3:%?
d \

3¥=3 x3'=3 x3=9

L T~

31=3 x3%=3 x1=3

\ /7

3=

Recursive Calls to the Power Function

Function call with
¥»x=3.0n=75

]

— Inductive case generates
power(3.0,5) = 3'[}_:_}: new call with n = 4

\

_ Inductive case generates
power(3.0,4) = 3"0‘*,[:' new call with n = 3

\

power(3.0,3) = 3.0 _*,D Inductive case gencrates

new call withn = 2

\

new call withn = 1

power(3.0,2) = 3. ﬂ_iD Inductive case generates

\

— Inductive case generates
power(3.0,1) = 3.0 «[|| AU 0

\

_ Anchor case yields
power(3.0,0) =|1.0 function value 1.0

e

Recursive Calls to the Power Function

Value 243 .0 returned for the
ariginal function call with

power(3.0,0)

1.0

Value 81.0 returned for
the function call with
x=3.0n=4

Value 27 .0 returned for
the function call with
x=3.00n=3

Value 9.0 returned for
the function call with
¥x=3.0n=2

Value 3.0 returned for
the function call with
¥=3,0n=1

x=3.0n=5
t
power(3.0,5) =243.0
power(3.0,4) = 3.0 2?.[.'1:-;1.{]
power(3.0,3) = 3.0 19,0 -—5?.{]
power(3.0,2) = 3.0 *}{3.0 =5.{}
power(3.0,1) = 3.0 =|1.0 =§.0

Value 1,0 returned for
the function call with
x=3.0.n=0

Example: Factorials

¢ Base case: 0! = 1

¢ Inductive case: n! = n*(n-1)!

int Factorial (int n)
{ if (n == 0)
return 1;
else

return n * Factorial(n - 1);

T(n)=

O(n)

e

Factorial

™

return4 * 6 =24 — Final Result

N\

return3 * 2 =6

return2 * 1 =2

returtnl1* 1 =1

|

return 1

Comments on Recursion

However, many common textbook examples of recursion are tail-
recursive, 1.e. the last statement in the recursive function is a recursive

Invocation.

Tail-recursive functions can be written (much) more efficiently using a

loop.

Tail recursive functions are often said to “return the value of the last

recursive call as the value of the function”

Binary Recursion

® When an algorithm makes two recursive calls we say that it uses

binary recursion.
® Fibonacci numbers are recursively detined as follows:
F,=0
F, = 1;
E=F +FE,fori>1

Fibonaccli Numbers

Algorithm Fib(n)

Input: Nonnegative integer n.
Output: The nth Fibonacci numberF..
unsigned fib(unsigned n)

{

if (n<=2)

return 1; // anchor case

// else

return fib(n - 1) + fib(n - 2); // inductive case (n > 2)
}

Recursive Trace

5

Recursion Tree

+{1]|=3 fib(3) =j1|+[1]|=2

AN ,

fib(2) =|1|| |Ffib(2) =|1{| |fib(1) =|1

fib(3) =|1|+|1

anchor anchor anchor

fib(2) = [1]| [fib(1) =[1

anchor anchor

e

// Fibonacci numbers
int F(unsigned n)

{ // recursive, expensive!
if (n < 3)
return 1;
else Recursive: O(1.7%)
return F(n -1) + F(n - 2);
}

int F(unsigned n)
{ // iterative, cheaper
int fibl =1, fib2 = 1;
for (int i = 3; i <= n; 1i++)
{
int £fib3 = fibl + fib2;
fibl = £fib2;
fib2 = £fib3;
}

return fib2;

}

Iterative: O(n)

More complicated recursive functions are sometimes replaced by iterative functions that use

\a stack to store the recursive calls. (See Section 7.3)

// Counting the number of digits in a positive integer
int F(int n, int count)

{ // recursive, expensive!
if (n < 10)
return 1 + count;
else

return F(n/10, ++count);

int F(int n)
{ // iterative, cheaper
int count = 1;
while (n >= 10)
{
count++;
n /= 10;
}

return count;

e
Computing times of recursive functions

Have to solve a recurrence relation. _
In emacs/xemacs:

Esc-n Esc-x hanoi
// Towers of Hanoi

void Move (int n, char source, char destination, char spare)
{
if (n <= 1) // anchor (base) case
cout << "Move the top disk from " << source
<< " to " << destination << endl;
else
{ // inductive case
Move (n-1, source, spare, destination) ;
Move (1, source, destination, spare);
Move (n-1, spare, destination, source);
}
}

T(m)= 02"

N

THANK YOU

?

