
ALGORITHMS & DATA STRUCTURES – I

COMP 221

SORTING

Sorting
Sorting is one of the most frequently performed computing tasks.

It is often required to keep data in order.

- Sorting makes many questions about the array easier to answer. In a sorted
array, searching can be done efficiently (dictionaries, telephone books,
class

lists are sorted).

- Often, sorting is required as an auxiliary step for more complex algorithms.

- Sorting has been studied intensively and many algorithms have been
developed.

Selection sort
We start with a straightforward algorithm called Selection Sort. For simplicity,

we assume that the data items are numbers and they should be
sequenced in the ascending order.

An array A[0..n-1] of n elements A[0], A[1], … , A[n-1] is sequenced in the
ascending order if

A[0] ≤ A[1] ≤ A[2] ≤… ≤ A[n-1].

The general idea of the algorithm can be described as follows.

 We search the array for the smallest element and swap that element with
the first one.

 Then we search for the second smallest, and we swap that element with
the second one.

 These steps are repeated until we have sorted all of the data.

Example
Suppose that the following list is to be sorted into ascending order:

67, 33, 21, 84, 49, 50, 75

We scan the list to locate the smallest element and find it in position 3:

67, 33, 21, 84, 49, 50, 75

We interchange this element with the first element and thus properly position the

smallest element at the beginning of the list:

67, 33, 21, 84, 49, 50, 75

We now scan the sublist consisting of the elements from position 2 on to
find the smallest element

21,| 33, 67, 84, 49, 50, 75

and exchange it with the second element (itself in this case), thus properly
positioningthe next-to-smallest element in position 2:

21, 33, 67, 84, 49, 50, 75

We continue in this manner, locating the smallest element in the sublist of
elements from position 3 on and interchanging it with the third
element, then properly positioning the smallest element in the sublist of
elements from position 4 on, and so on until we eventually do this for
the sublist consisting of the last two elements:

21, 33,| 49, 84, 67, 50, 75

21, 33, 49,| 50, 67, 84, 75

21, 33, 49, 50,| 67, 84, 75

21, 33, 49, 50, 67,| 75, 84

Positioning the smallest element in this last sublist obviously also positions
the last element correctly and thus completes the sort.

Selection sort Algorithm
For i = 1 to n - 1 do the following:

// Find the smallest element in the sublist x[i] ... x[n].

a. Set smallPos = i and smallest = x[smallPos].

b. For j = i + 1 to n -1 do the following:

If x[j] < smallest: HIs maller element found

Set smallPos = j and smallest = x[smallPos].

End for

//Now interchange smallest with x[i], first element of this sublist.

c. Set x[smallPos] = x[i] and x[i] = smallest.

End for.

The time complexity of the selection sort is O(n2).

Bubble Sort
With the selection sort, we make one exchange at the end of one pass.

-The bubble sort improves the performance by making more than one
exchange during its pass.

- By making multiple exchanges, we will be able to move more
elements toward their correct positions using the same number of
comparisons as the selection sort makes.

-The key idea of the bubble sort is to make pair-wise comparisons and
exchange the positions of the pair if they are out of order.

Example
To illustrate bubble sort, consider again the list

67, 33, 21 , 84, 49, 50, 75

On the first pass, we compare the first two elements, 67 and 33, and interchange
them because they are out of order:

67, 33, 21 , 84, 49, 50, 75

33, 67, 21 , 84, 49, 50, 75

Now we compare the second and third elements, 67 and 21 and interchange them:

33, 67, 21 , 84, 49, 50, 75

33, 21, 67 , 84, 49, 50, 75

Next we compare 67 and 84 but do not interchange them because they are already
in the correct order:

Next, 84 and 49 are compared and interchanged:

33, 21, 67 , 84, 49, 50, 75

33, 21, 67 , 49, 84, 50, 75

Then 84 and 50 are compared and interchanged:

33, 21, 67 , 49, 84, 50, 75

33, 21, 67 , 49, 50, 84, 75

Finally 84 and 75 are compared and interchanged:

33, 21, 67 , 49, 50, 84, 75

33, 21, 67 , 49, 50, 75, 84

The first pass through the list is now complete.

We are guaranteed that on this pass, the largest element in the list will "sink" to

the end of the list, since it will obviously be moved past all smaller elements:

33, 21, 67 , 49, 50, 75, 84

We now scan the list again, but this time we leave out the last item
because it is already in its proper position.

33, 21, 67, 49, 50, 75, 84

21, 33, 67, 49, 50, 75, 84

21, 33, 67, 49, 50, 75, 84

21, 33, 49, 67, 50, 75, 84

21, 33, 49, 50, 67, 75, 84

21, 33, 49, 50, 67, 75, 84

Bubble Sort Algorithm
1. Initialize numCompares to n-1.//number of comparisons on next pass

2. While numCompares not equal to 0, do the following:

a. Set last = 1. I location of last element involved in a swap

b. For i = 1 to numCompares:

If Xi>Xi+1

Swap xi and xi + 1 and set last = i.

c. Set numCompares = last - 1.

End while.

The time complexity of the Bubble sort is O(n2).

Insertion Sort
Reduces number of key comparisons made in selection sort

Can be applied to both arrays and linked lists.

Sorts list by

- Finding first unsorted element in list

- Moving it to its proper position

Insertion sorts are based on the idea of repeatedly inserting a new element
into a list of already sorted elements so that the resulting list is still sorted.

The method used is similar to that used by a card player when putting cards
into order as they are dealt.

Example
67, 33, 21 , 84, 49, 50, 75 Initial sorted sublist of 1 element

33, 67, 21 , 84, 49, 50, 75 Insert 33 to get 2-element sorted sublist

21, 33, 67 , 84, 49, 50, 75 Insert 21 to get 3-element sorted sublist

21, 33, 67 , 84, 49, 50, 75 Insert 84 to get 4-element sorted sublist

21, 33, 49 , 67, 84, 50, 75 Insert 49 to get 5-element sorted sublist

21, 33, 49 , 50, 67, 84, 75 Insert 50 to get 6-element sorted sublist

21, 33, 49 , 50, 67, 75, 84 Insert 75 to get 7-element sorted sublist

Insertion Sort Algorithm
For i = 2 to n do the following:

//Insert x[i] into its proper position among x[l], . .. , x[i - 1]

a. Set nextElement = x[i] and x[O] = nextElement.

b. Setj=i.

c. While nextElement < x[j - 1] do the following:

//Shift element to the right to open a spot

Set x[j] equal to x[j -1] and decrement j by 1.

End while.

// Now drop nextElement into the open spot.

d. Set x[j] equal to nextElement.

End for.

The time complexity of the selection sort is O(n2)

