
ALGORITHMS & DATA STRUCTURES – I

COMP 221

STACKS

Stack as an ADT
A stack is an ordered collection of data items in which access is

possible only at one end (called the top of the stack).

Basic operations:

1. Construct a stack (usually empty)

2. Check if stack is empty

3. Push: Add an element at the top of the stack

4. Top: Retrieve the top element of the stack

5. Pop: Remove the top element of the stack

Terminology is from spring-loaded

stack of plates in a cafeteria:
Adding a plate pushes those below it

down in the stack

Removing a plate pops those below it

up one position.

Construction: Initializes an empty stack.

Empty operation: Determines if stack contains any values

Push operation: Modifies a stack by adding a value to top of stack

Top operation: Retrieves the value at the top of the stack

Pop operation: Modifies a stack by removing the top value of the stack

To help with debugging, add early on:

Output: Displays all the elements stored in the stack.

Stack Operations:

2. Implementing a Stack Class

Define data members: consider storage structure(s)

Attempt #1: Use an array with the top of the stack at position 0.

e.g., Push 75, Push 89, Push 64, Pop

+ features: This models the operation of the stack of plates.

– features: Not efficient to shift the array elements up and down in the array.

0
1
2
3
4

0
1
2
3
4

75

Push 75

0
1
2
3
4

89

Push 89

75
0
1
2
3
4

89

Push 64

75

64 0
1
2
3
4

89

Pop

75

Implementing Stack Class — Refined

Keep the bottom of stack at position 0. Maintain a "pointer" myTop to the top of the

stack.

Instead of modeling a stack of plates, model a stack of books (or a discard pile in a card game.)

75
89

4
3
2
1
0

Push 75 Push 89

75
89

Push 64

75

64

Pop
4
3
2
1
0

4
3
2
1
0

4
3
2
1
0

4
3
2
1
0

89
75

64

myTop
myTop

myTop
myTop

myTop

myTop = -1 myTop = 0 myTop = 1 myTop = 2 myTop = 1

Note: No moving of array elements.

Note: We
don't clear

this.

Provide:

• An array data member to hold the stack elements.

• An integer data member to indicate the top of the stack.

Problems: We need an array declaration of the form
ArrayElementType myArray[ARRAYCAPACITY];

— What type should be used?

Solution (for now): Use the typedef mechanism:
typedef int StackElement;

// put this before the class declaration

— What about the capacity?
const int STACK_CAPACITY = 128;

// put this before the class declaration

Now we can declare the array data member in the private section:
StackElement myArray[STACK_CAPACITY];

Stack's Data Members

A Simple Array Based Implementation

 We initialize top to -1 (which means stack is empty initially).

 size: No of elements in stack: top + 1. (-1 + 1 = 0 elements

initially)

 isEmpty: if top < 0 then true otherwise false.

 To push object:

 If size is N (full stack) throw Exception

 Otherwise increment top and store new object at S[top]

A Simple Array Based Implementation

 To pop:

 If isEmpty() is true then print Stack is Empty

 Otherwise store S[top] in a local variable, assign null to S[top],

decrement top and return local variable having the previous top.

Implementation of Stack Operations

size():

return top+1

isempty()

if(top < 0)

return 1;

else

return 0;

isfull()

if (top == size-1)

return 1;

else

return 0;

push(int):

if isfull() then

print overflow

else

top = top + 1;

s[top] = [insert item];

pop():

if isempty() then

print stack is empty

else

cout<<s[top]

top--;

Application of Stacks: RPN

For most common arithmetic operations the operator symbol is placed between its
two operands. For example,

A + B, C - D, E*F, G/H

This is called Infix Notation

Polish Notation, named after the Polish mathematician Jan Lukasiewich, refers to
the notation in which the operator symbol is placed before its two operands. For
example,

+AB, -CD, *EF, /GH

Frequently known as Prefix Notation

Reverse Polish Notation refers to the analogous notation in which the operator
symbol is placed after its two operands. For example,

AB+, CD-, EF*, GH/

Frequently known as Postfix Notation

Stack Applications
 Postponement: Evaluating arithmetic expressions.

 Prefix: + a b

 Infix: a + b (what we use in grammar school)

 Postfix: a b +

 In high level languages, infix notation cannot be used to evaluate
expressions. We must analyze the expression to determine the order in
which we evaluate it. A common technique is to convert a infix notation
into postfix notation, then evaluating it.

Examples

Infix Prefix(PN) Postfix (RPN)

A + B + A B A B +

A * B + C + * A B C A B * C +

A * (B + C) * A + B C A B C + *

A – B – C – D - - - A B C D A B – C – D –

Infix to Postfix Conversion
 Rules:

 Operands immediately go directly to output

 Operators are pushed into the stack (including parenthesis)

- Check to see if stack top operator is less than current operator

- If the top operator is less than, push the current operator onto stack

- If the top operator is greater than the current, pop top operator and push onto
stack, push current operator onto stack

- Priority 2: * /

- Priority 1: + -

- Priority 0: (

If we encounter a right parenthesis, pop from stack until we get

matching left parenthesis. Do not output parenthesis.

Infix to Postfix Example
A + B * C - D / E

Infix Stack(bot->top) Postfix

a) A + B * C - D / E

b) + B * C - D / E A

c) B * C - D / E + A

d) * C - D / E + A B

e) C - D / E + * A B

f) - D / E + * A B C

g) D / E + - A B C *

h) / E + - A B C * D

i) E + - / A B C * D

j) + - / A B C * D E

k) A B C * D E / - +

Infix to Postfix Example
A * B - (C + D) + E

Infix Stack(bot->top) Postfix

a) A * B - (C - D) + E empty empty

b) * B - (C + D) + E empty A

c) B - (C + D) + E * A

d) - (C + D) + E * A B

e) - (C + D) + E empty A B *

f) (C + D) + E - A B *

g) C + D) + E - (A B *

h) + D) + E - (A B * C

i) D) + E - (+ A B * C

j)) + E - (+ A B * C D

k) + E - A B * C D +

l) + E empty A B * C D + -

m) E + A B * C D + -

n) + A B * C D + - E

o) empty A B * C D + - E +

Converting Infix to Postfix Expression

Suppose the following arithmetic expression Q written in Infix notation:

Q: A + (B * C – (D / E ^ F) * G) * H

We transform Infix expression Q to its equivalent expression P in Postfix by

using stack to hold operator and left parenthesis.

First we push “(“ onto STACK and then we add “)” to the end of Q.

Symbol Scanned STACK Expression P

(1) A (A

(2) + (+ A

(3) ((+ (A

(4) B (+ (A B

(5) * (+ (* A B

(6) C (+ (* A B C

(7) - (+ (- A B C *

(8) ((+ (- (A B C *

(9) D (+ (- (A B C * D

(10) / (+ (- (/ A B C * D

Converting Infix to Postfix Expression

Symbol Scanned STACK Expression P

(11) E (+ (- (/ A B C * D E

(12) ^ (+ (- (/ ^ A B C * D E

(13) F (+ (- (/ ^ A B C * D E F

(14)) (+ (- A B C * D E F ^ /

(15) * (+ (- * A B C * D E F ^ /

(16) G (+ (- * A B C * D E F ^ / G

(17)) (+ A B C * D E F ^ / G * -

(18) * (+ * A B C * D E F ^ / G * -

(19) H (+ * A B C * D E F ^ / G * - H

(20)) A B C * D E F ^ / G * - H * +

Evaluation of Postfix Expression: RPN

Underlining Technique

1. Scan the expression from left to right to find an operator.

2. Locate the last two preceding operands and combine them using this operator.

3. Repeat until the end of the expression is reached.

Example 1: 2 3 4 + 5 6 - - *

2 3 4 + 5 6 - - *

2 7 5 6 - - *

2 7 5 6 - - *

2 7 -1 - *

2 7 -1 - *

2 8 *

2 8 *

16

Evaluation of Postfix Expression: RPN

Example 2: Suppose the following arithmetic expression P written in postfix notation:

P: 5, 6, 2, +, *, 12, 4, /, -

We evaluate P by adding a sentinel right parenthesis at the end of P to obtain

5, 6, 2, +, *, 12, 4, /, -,)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Symbol Scanned STACK

(1) 5 5

(2) 6 5, 6

(3) 2 5, 6, 2

(4) + 5, 8

(5) * 40

(6) 12 40, 12

(7) 4 40, 12, 4

(8) / 40, 3

(9) - 37

(10))

THANK YOU

