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Building Multiple 

Regression Models

LEARNING OBJECTIVES

This chapter presents several advanced topics in multiple regression 
analysis, enabling you to:

1. Generalize linear regression models as polynomial regression models
using model transformation and Tukey’s ladder of transformation,
accounting for possible interaction among the independent variables

2. Examine the role of indicator, or dummy, variables as predictors or 
independent variables in multiple regression analysis

3. Use all possible regressions, stepwise regression, forward selection, and
backward elimination search procedures to develop regression models
that account for the most variation in the dependent variable and are
parsimonious

4. Recognize when multicollinearity is present, understanding general 
techniques for preventing and controlling it
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Chief executive officers for large
companies receive widely varying
amounts of compensation for their

work. Why is the
range so wide?
What are some
of the variables
that seem to con-

tribute to the diversity of CEO compensation packages?
As a starting place, one might examine the role of com-

pany size as measured by sales volume, number of employees,
number of plants, and so on in driving CEO compensation.
It could be argued that CEOs of larger companies carry larger
responsibilities and hence should receive higher compensa-
tion. Some researchers believe CEO compensation is related
to such things as industry performance of the firm, percent-
age of stock that has outside ownership, and proportion of
insiders on the board. At least a significant proportion of
CEOs are likely to be compensated according to the perform-
ance of their companies during the fiscal period preceding
compensation. Company performance can be measured by
such variables as earnings per share, percentage change in
profit, sales, and profit. In addition, some theorize that com-
panies with outside ownership are more oriented toward
declaring dividends to stockholders than toward large CEO
compensation packages.

Do CEOs’ individual and family
characteristics play a role in their com-
pensation? Do such things as CEO age,
degrees obtained, marital status, mili-
tary experience, and number of chil-
dren matter in compensation? Do type
of industry and geographic location of
the company matter? What are the sig-
nificant factors in determining CEO
compensation?

What follow are CEO compensa-
tion data generated by using manage-
ment compensation models published
by Wyatt Data Services. In the first col-
umn on the left are cash compensation
figures (in $1,000) for 20 CEOs. Those
figures represent salary, bonuses, and
any other cash remuneration given to
the CEO as part of compensation. The
four columns to the right contain data
on four variables associated with each
CEO’s company: sales, number of
employees, capital investment, and
whether the company is in manufac-

turing. Sales figures and capital investment figures are given
in $ millions.
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Determining Compensation for CEOs

Cash Number of Capital
Compensation Sales Employees Investment Manufacturing

212 35.0 248.00 10.5 1

226 27.2 156.00 3.8 0

237 49.5 348.00 14.9 1

239 34.0 196.00 5.0 0

242 52.8 371.00 15.9 1

245 37.6 216.00 5.7 0

253 60.7 425.00 18.3 1

262 49.2 285.00 8.0 0

271 75.1 524.00 22.6 1

285 69.0 401.00 12.3 0

329 137.2 947.00 41.4 1

340 140.1 825.00 30.3 0

353 162.9 961.00 36.7 0

384 221.7 1517.00 67.1 1

405 261.6 1784.00 79.2 1

411 300.1 1788.00 79.8 0

456 455.5 2733.00 135.7 0

478 437.6 2957.00 132.7 1

525 802.1 4857.00 278.4 0

564 731.5 4896.00 222.2 1

Managerial and Statistical Questions

1. Can a model be developed to predict CEO compensation?

2. If a model is developed, how can the model be evaluated
to determine whether it is valid?

3. Is it possible to sort out variables that appear to be related
to CEO compensation and determine which variables are
more significant predictors?

4. Are some of the variables related to CEO compensation
but in a nonlinear manner?

5. Are some variables highly interrelated and redundant in
their potential for determining CEO compensation?

Sources: Adapted from Jeffrey L. Kerr and Leslie Kren,“Effect of Relative
Decision Monitoring on Chief Executive Compensation,” Academy of
Management Journal, vol. 35, no. 2 (June 1992). Used with permission. Robin
L. Bartlett, James H. Grant, and Timothy I. Miller,“The Earnings of Top
Executives: Compensating Differentials for Risky Business,” Quarterly
Reviews of Economics and Finance, vol. 32, no. 1 (Spring 1992). Used with 
permission. Database derived using models published in 1993/1994 Top
Management Compensation Regression Analysis Report, 44th ed. Fort Lee, NJ:
Wyatt Data Services/ECS, December 1994.



548 Chapter 14 Building Multiple Regression Models

The regression models presented thus far are based on the general linear regression model,
which has the form

(14.1)

where

0 = the regression constant

1, 2 . . . , k are the partial regression coefficients for the k independent variables
x1, . . . , xk are the independent variables
k = the number of independent variables

In this general linear model, the parameters, , are linear. It does not mean, how-
ever, that the dependent variable, y, is necessarily linearly related to the predictor vari-
ables. Scatter plots sometimes reveal a curvilinear relationship between x and y.
Multiple regression response surfaces are not restricted to linear surfaces and may be
curvilinear.

To this point, the variables, xi , have represented different predictors. For example, in
the real estate example presented in Chapter 13, the variables—x1, x2—represented two
predictors: number of square feet in the house and the age of the house, respectively.
Certainly, regression models can be developed for more than two predictors. For example,
a marketing site location model could be developed in which sales, as the response variable,
is predicted by population density, number of competitors, size of the store, and number
of salespeople. Such a model could take the form

This regression model has four xi variables, each of which represents a different
predictor.

The general linear model also applies to situations in which some xi represent recoded
data from a predictor variable already represented in the model by another independent
variable. In some models, xi represents variables that have undergone a mathematical
transformation to allow the model to follow the form of the general linear model.

In this section of this chapter, we explore some of these other models, including polyno-
mial regression models, regression models with interaction, and models with transformed
variables.

Polynomial Regression

Regression models in which the highest power of any predictor variable is 1 and in which
there are no interaction terms—cross products (xi xj)—are referred to as first-order mod-
els. Simple regression models like those presented in Chapter 12 are first-order models with
one independent variable. The general model for simple regression is

If a second independent variable is added, the model is referred to as a first-order
model with two independent variables and appears as

Polynomial regression models are regression models that are second- or higher-order
models. They contain squared, cubed, or higher powers of the predictor variable(s) and
contain response surfaces that are curvilinear. Yet, they are still special cases of the general
linear model given in formula 14.1.

Consider a regression model with one independent variable where the model includes
a second predictor, which is the independent variable squared. Such a model is referred to
as a second-order model with one independent variable because the highest power among
the predictors is 2, but there is still only one independent variable. This model takes the

y = b0 + b1x1 + b2x2 + H

y = b0 + b1x1 + H

#

y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + H

bi

bbb

b

y = b0 + b1x1 + b2x2 + . . . + bk 
xk + H ,

NONLINEAR MODELS: MATHEMATICAL TRANSFORMATION14.1
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following form:

This model can be used to explore the possible fit of a quadratic model in predicting a
dependent variable. A quadratic model is a multiple regression model in which the predictors are
a variable and the square of the variable. How can this be a special case of the general linear
model? Let x2 of the general linear model be equal to x2

1 then ,
becomes . Through what process does a researcher go to develop
the regression constant and coefficients for a curvilinear model such as this one?

Multiple regression analysis assumes a linear fit of the regression coefficients and
regression constant, but not necessarily a linear relationship of the independent variable
values (x). Hence, a researcher can often accomplish curvilinear regression by recoding the
data before the multiple regression analysis is attempted.

As an example, consider the data given in Table 14.1. This table contains sales volumes
(in $ millions) for 13 manufacturing companies along with the number of manufacturer’s
representatives associated with each firm. A simple regression analysis to predict sales by
the number of manufacturer’s representatives results in the Excel output in Figure 14.1.

y = b0 + b1x1 + b2x2 + H
y = b0 + b1x1 + b2x

2
1 + H

y = b0 + b1x1 + b2x 
2
1 + H

TABLE 14.1

Sales Data for 13
Manufacturing Companies

Sales Number of
Manufacturer ($ millions) Manufacturing Representatives

1 2.1 2

2 3.6 1

3 6.2 2

4 10.4 3

5 22.8 4

6 35.6 4

7 57.1 5

8 83.5 5

9 109.4 6

10 128.6 7

11 196.8 8

12 280.0 10

13 462.3 11

Excel Simple Regression
Output for Manufacturing

Example

FIGURE 14.1 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.933
R Square 0.870
Adjusted R Square 0.858
Standard Error 51.098
Observations 13

ANOVA

df SS MS F
Significance

F

Regression 1 73.69 0.0000033
Residual 11

192395.416
2611.041

Total 12

192395.416
28721.452

221116.868

Coefficients Standard Error t Stat P-value

Intercept −3.72 0.0033561
Reps

−107.029
41.026

28.737
4.779 8.58 0.0000033
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FIGURE 14.2  

Minitab Scatter Plots of Manufacturing Data 
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This regression output shows a regression model with an r 2 of 87.0%, a standard error
of the estimate equal to 51.10, a significant overall F test for the model, and a significant t
ratio for the predictor number of manufacturer’s representatives.

Figure 14.2(a) is a scatter plot for the data in Table 14.1. Notice that the plot of num-
ber of representatives and sales is not a straight line and is an indication that the rela-
tionship between the two variables may be curvilinear. To explore the possibility that a
quadratic relationship may exist between sales and number of representatives, the business
researcher creates a second predictor variable, (number of manufacturer’s representa-
tives)2, to use in the regression analysis to predict sales along with number of manufac-
turer’s representatives, as shown in Table 14.2. Thus, a variable can be created to explore
second-order parabolic relationships by squaring the data from the independent variable
of the linear model and entering it into the analysis. Figure 14.2(b) is a scatter plot of sales
with (number of manufacturer’s reps)2. Note that this graph, with the squared term, more
closely approaches a straight line than does the graph in Figure 14.2(a). By recoding the
predictor variable, the researcher creates a potentially better regression fit.

With these data, a multiple regression model can be developed. Figure 14.3 shows the
Excel output for the regression analysis to predict sales by number of manufacturer’s rep-
resentatives and (number of manufacturer’s representatives)2.

Examine the output in Figure 14.3 and compare it with the output in Figure 14.1 for
the simple regression model. The R2 for this model is 97.3%, which is an increase from the
r 2 of 87.0% for the single linear predictor model. The standard error of the estimate for this
model is 24.59, which is considerably lower than the 51.10 value obtained from the simple

TABLE 14.2 

Display of Manufacturing Data
with Newly Created Variable

Sales Number of Number of
($ millions) Mgfr. Reps (Mgfr. Reps)2

Manufacturer y x1 x2 (x1)2

1 2.1 2 4

2 3.6 1 1

3 6.2 2 4

4 10.4 3 9

5 22.8 4 16

6 35.6 4 16

7 57.1 5 25

8 83.5 5 25

9 109.4 6 36

10 128.6 7 49

11 196.8 8 64

12 280.0 10 100

13 462.3 11 121

�



regression model. Remember, the sales figures were $ millions. The quadratic model
reduced the standard error of the estimate by 26.51($1,000,000), or $26,510,000. It appears
that the quadratic model is a better model for predicting sales.

An examination of the t statistic for the squared term and its associated probability in
Figure 14.3 shows that it is statistically significant at = .001(t = 6.12 with a probability of
.0001). If this t statistic were not significant, the researcher would most likely drop the
squared term and revert to the first-order model (simple regression model).

In theory, third- and higher-order models can be explored. Generally, business
researchers tend to utilize first- and second-order regression models more than higher-
order models. Remember that most regression analysis is used in business to aid decision
making. Higher-power models (third, fourth, etc.) become difficult to interpret and diffi-
cult to explain to decision makers. In addition, the business researcher is usually looking
for trends and general directions. The higher the order in regression modeling, the more
the model tends to follow irregular fluctuations rather than meaningful directions.

Tukey’s Ladder of Transformations

As just shown with the manufacturing example, recoding data can be a useful tool in
improving the regression model fit. Many other ways of recoding data can be explored in
this process. John W. Tukey* presented a “ladder of expressions” that can be explored to
straighten out a plot of x and y, thereby offering potential improvement in the predictabil-
ity of the regression model. Tukey’s ladder of transformations gives the following expres-
sions for both x and y.

Ladder for x

Ladder for y

Á , y4, y 
3, y 

2, y, 1y, y, log y,  -  

11y
, -  

1

y
, -  

1

y 2, -  

1

y 3, -  

1

y 4, Á

; Up Ladder TNeutral Down Ladder:

Á , x4, x 
3, x 

2, x, 1x, x, log x,  -  

11x
, -  

1

x
, -

1

x2, -  

1

x 3, -  

1

x4, Á

; Up Ladder TNeutral Down Ladder:

a

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.986
R Square 0.973
Adjusted R Square 0.967
Standard Error 24.593
Observations 13

ANOVA

df SS MS F
Significance

F

Regression 215068.6001 107534.3000 177.79 0.000000015
Residual 6048.2676 604.8268
Total

2
10
12 221116.8677

Coefficients Standard Error t Stat P-value

Intercept 18.067 0.4808194
Reps −15.723 0.1307046
Reps Squared 4.750

24.673
9.550
0.776

0.73
−1.65
6.12 0.0001123

Excel Output for Quadratic
Model of Manufacturing

Example

FIGURE 14.3

*John W. Tukey, Exploratory Data Analysis. Reading, MA: Addison-Wesley, 1977.

14.1 Nonlinear Models: Mathematical Transformation 551



552 Chapter 14 Building Multiple Regression Models

These ladders suggest to the user potential ways to recode the data. Tukey published a
four-quadrant approach to determining which expressions on the ladder are more appro-
priate for a given situation. This approach is based on the shape of the scatter plot of x and
y. Figure 14.4 shows the four quadrants and the associated recoding expressions. For exam-
ple, if the scatter plot of x and y indicates a shape like that shown in the upper left quad-
rant, recoding should move “down the ladder” for the x variable toward

or “up the ladder” for the y variable toward

Or, if the scatter plot of x and y indicates a shape like that of the lower right quadrant,
the recoding should move “up the ladder” for the x variable toward

or “down the ladder” for the y variable toward

In the manufacturing example, the graph in Figure 14.2(a) is shaped like the curve in
the lower right quadrant of Tukey’s four-quadrant approach. His approach suggests that the
business researcher move “up the ladder” on x as was done by using the squared term. The
researcher could have explored other options such as continuing on up the ladder of x or
going down the ladder of y. Tukey’s ladder is a continuum and leaves open other recoding
possibilities between the expressions. For example, between x2 and x3 are many possible
powers of x that can be explored, such as x 2.1, x 2.5, or x 2.86.

Regression Models with Interaction

Often when two different independent variables are used in a regression analysis, an inter-
action occurs between the two variables. This interaction was discussed in Chapter 11 in
two-way analysis of variance, where one variable will act differently over a given range of
values for the second variable than it does over another range of values for the second vari-
able. For example, in a manufacturing plant, temperature and humidity might interact in
such a way as to have an effect on the hardness of the raw material. The air humidity may
affect the raw material differently at different temperatures.

In regression analysis, interaction can be examined as a separate independent variable.
An interaction predictor variable can be designed by multiplying the data values of one

log y, -  

11y
, -

1

y
, -  

1

y2, -  

1

y 3, -  

1

y4 , Á

x2, x 3, x4, Á

y 
2, y 

3, y 
4, Á

log x, -  

11x
, -  

1

x
, -  

1

x 2, -  

1

x 3, -  

1

x 4 , Á

Move toward y 2, y 3, ... or
toward log x, −1/ x, ...

−1/ x, ...

Move toward y 2, y 3, ... or
toward x 2, x 3

Move toward log y,
or toward log x,

−1/ y, ... −1/ y, ...Move toward log y,
or toward x 2, x 3, ...

Tukey’s Four-Quadrant
Approach

FIGURE 14.4  



variable by the values of another variable, thereby creating a new variable. A model that
includes an interaction variable is

The x1x2 term is the interaction term. Even though this model has 1 as the highest power
of any one variable, it is considered to be a second-order equation because of the x1x2 term.

Suppose the data in Table 14.3 represent the closing stock prices for three corporations
over a period of 15 months. An investment firm wants to use the prices for stocks 2 and 3
to develop a regression model to predict the price of stock 1. The form of the general lin-
ear regression equation for this model is

where

y = price of stock 1
x1 = price of stock 2
x2 = price of stock 3

Using Minitab to develop this regression model, the firm’s researcher obtains the first
output displayed in Figure 14.5. This regression model is a first-order model with two pre-
dictors, x1 and x2. This model produced a modest R2 of .472. Both of the t ratios are small
and statistically nonsignificant (t = -.62 with a p-value of .549 and t = -.36 with a p-value
of .728). Although the overall model is statistically significant, F = 5.37 with probability of
.022, neither predictor is significant.

Sometimes the effects of two variables are not additive because of the interacting
effects between the two variables. In such a case, the researcher can use multiple regression

y = b0 + b1x1 + b2x2 + H

y = b0 + b1x1 + b2x2 + b3x1x2 + H
Stock 1 Stock 2 Stock 3

41 36 35

39 36 35

38 38 32

45 51 41

41 52 39

43 55 55

47 57 52

49 58 54

41 62 65

35 70 77

36 72 75

39 74 74

33 83 81

28 101 92

31 107 91

TABLE 14.3  

Prices of Three Stocks over a
15 Month Period

Regression Analysis: Stock 1 versus Stock 2, Stock 3 
The regression equation is
Stock 1 = 50.9 - 0.119 Stock 2 - 0.071 Stock 3
Predictor Coef SE Coef T P
Constant 50.855 3.791 13.41 0.000
Stock 2 –0.1190 0.1931 –0.62 0.549
Stock 3 –0.0708 0.1990 –0.36 0.728
S = 4.57020 R-Sq = 47.2% R-Sq(adj) = 38.4%
Analysis of Variance
Source DF SS MS F P
Regression 2 224.29 112.15 5.37 0.022
Residual Error 12 250.64 20.89
Total 14 474.93
Regression Analysis: Stock 1 versus Stock 2, Stock 3, Interaction 
The regression equation is
Stock 1 = 12.0 + 0.879 Stock 2 + 0.220 Stock 3 - 0.00998 Interaction
Predictor Coef SE Coef T P
Constant 12.046 9.312 1.29 0.222
Stock 2 0.8788 0.2619 3.36 0.006
Stock 3 0.2205 0.1435 1.54 0.153
Interaction –0.009985 0.002314 –4.31 0.001
S = 2.90902 R-Sq = 80.4% R-Sq(adj) = 75.1%
Analysis of Variance
Source DF SS MS F P
Regression 3 381.85 127.28 15.04 0.000
Residual Error 11 93.09 8.46
Total 14 474.93

Two Minitab Regression
Outputs—without and with

Interaction

FIGURE 14.5 
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554 Chapter 14 Building Multiple Regression Models

analysis to explore the interaction effects by including an interaction term in the equation.

The equation fits the form of the general linear model

where x3 = x1x2. Each individual observation of x3 is obtained through a recoding
process by multiplying the associated observations of x1 and x2.

Applying this procedure to the stock example, the researcher uses the interaction term
and Minitab to obtain the second regression output shown in Figure 14.5. This output
contains x1, x2, and the interaction term, x1x2. Observe the R2, which equals .804 for this
model. The introduction of the interaction term caused the R2 to increase from 47.2% to
80.4%. In addition, the standard error of the estimate decreased from 4.570 in the first
model to 2.909 in the second model. The t ratios for both the x1 term and the interaction
term are statistically significant in the second model (t = 3.36 with a p-value of .006 for x1

and t = -4.31 with a probability of.001 for x1x2). The inclusion of the interaction term
helped the regression model account for a substantially greater amount of the dependent
variable and is a significant contributor to the model.

Figure 14.6(a) is the response surface for the first regression model presented in Figure 14.5
(the model without interaction). As you observe the response plane with stock 3 as the
point of reference, you see the plane moving upward with increasing values of stock 1 as
the plane moves away from you toward smaller values of stock 2. Now examine Figure 14.6(b),
the response surface for the second regression model presented in Figure 14.5 (the model
with interaction). Note how the response plane is twisted, with its slope changing as it
moves along stock 2. This pattern is caused by the interaction effects of stock 2 prices and
stock 3 prices. A cross-section of the plane taken from left to right at any given stock 2 price
produces a line that attempts to predict the price of stock 3 from the price of stock 1. As
you move back through different prices of stock 2, the slope of that line changes, indicat-
ing that the relationship between stock 1 and stock 3 varies according to stock 2.

A researcher also could develop a model using two independent variables with their
squares and interaction. Such a model would be a second-order model with two independ-
ent variables. The model would look like this.

Model Transformation

To this point in examining polynomial and interaction models, the focus has been on
recoding values of x variables. Some multiple regression situations require that the depend-
ent variable, y, be recoded. To examine different relationships between x and y, Tukey’s
four-quadrant analysis and ladder of transformations can be used to explore ways to
recode x or y in attempting to construct regression models with more predictability.
Included on the ladder are such y transformations as log y and 1/y.

y = b0 + b1x1 + b2x2 + b3x 
2
1 + b4x 

2
2 + b5x1x2 + H

y = b0 + b1x1 + b2x2 + b3x3 + H

y = b0 + b1x1 + b2x2 + b3x1x2 + H
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Suppose the following data represent the annual sales and annual advertising expen-
ditures for seven companies. Can a regression model be developed from these figures that
can be used to predict annual sales by annual advertising expenditures?

Sales Advertising 
Company ($ million year) ($ million year)

1 2,580 1.2

2 11,942 2.6

3 9,845 2.2

4 27,800 3.2

5 18,926 2.9

6 4,800 1.5

7 14,550 2.7

One mathematical model that is a good candidate for fitting these data is an exponen-
tial model of the form

This model can be transformed (by taking the log of each side) so that it is in the form
of the general linear equation.

This transformed model requires a recoding of the y data through the use of loga-
rithms. Notice that x is not recoded but that the regression constant and coefficient are in
logarithmic scale. If we let the exponential
model is in the form of the general linear model.

The process begins by taking the log of the y values. The data used to build the regres-
sion model and the Excel regression output for these data follow.

Log Sales (y) Advertising (x)

3.4116 1.2

4.0771 2.6

3.9932 2.2

4.4440 3.2

4.2771 2.9

3.6812 1.5

4.1629 2.7

y¿ = b ¿0 + b ¿1x

y¿ = log y, b ¿0 = log b0, and  b ¿1 = log b1,

log  y = log b0 + x  log b1

y = b0b
x
1 H

//
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SUMMARY OUTPUT

Regression Statistics

Multiple R  0.990
R Square  0.980
Adjusted R Square 0.977
Standard Error 0.0543
Observations 7

ANOVA

SS MS
Significance

F

Regression 0.739215 0.739215 0.000018

F

250.36
Residual 0.014763 0.002953
Total

df

1
5
6 0.753979

Coefficients Standard Error t Stat P-value

Intercept 39.80 0.00000019
Advertising

2.9003
0.4751

0.0729
0.0300 15.82 0.00001834
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A simple regression model (without the log recoding of the y variable) yields an R2 of
87%, whereas the exponential model R2 is 98%. The t statistic for advertising is 15.82 with
a p-value of 0.00001834 in the exponential model and 5.77 with a p-value of 0.00219 in the
simple regression model. Thus the exponential model gives a better fit than does the sim-
ple regression model. An examination of (x 2, y) and (x 3, y) models reveals R2 of .930 and
.969, respectively, which are quite high but still not as good as the R2 yielded by the expo-
nential model (the output for these models is not shown here).

The resulting equation of the exponential regression model is

In using this regression equation to determine predicted values of y for x, remember
that the resulting predicted y value is in logarithmic form and the antilog of the predicted
y must be taken to get the predicted y value in raw units. For example, to get the predicted
y value (sales) for an advertising figure of 2.0 ($ million), substitute x = 2.0 into the regres-
sion equation.

The log of sales is 3.8505. Taking the antilog of 3.8505 results in the predicted sales in
raw units.

Thus, the exponential regression model predicts that $2.0 million of advertising will
result in $7,087.61 million of sales.

Other ways can be used to transform mathematical models so that they can be treated
like the general linear model. One example is an inverse model such as

Such a model can be manipulated algebraically into the form

Substituting into this equation results in an equation that is in the form of
the general linear model.

To use this “inverse” model, recode the data values for y by using 1 y. The regression
analysis is done on the 1 y, x1, and x2 data. To get predicted values of y from this model,
enter the raw values of x1 and x2. The resulting predicted value of y from the regression
equation will be the inverse of the actual predicted y value.

> >y¿ = b0 + b1x1 + b2x2 + H

y¿ = 1>y b0 + b1x1 + b2x2 + H
1
y

=

y =
1

b0 + b1x1 + b2x2 + H

antilog(3.8505) = 7087.61($ million)

y = 2.9003 + .4751x = 2.9003 + .4751(2.0) = 3.8505

y = 2.9003 + .4751x

DEMONSTRATION
PROBLEM 14.1

In the aerospace and defense industry, some cost estimators predict
the cost of new space projects by using mathematical models that
take the form

These cost estimators often use the weight of the object being sent into space as
the predictor (x) and the cost of the object as the dependent variable (y ). Quite often

turns out to be a value between 0 and 1, resulting in the predicted value of y equal-
ing some root of x.

Use the sample cost data given here to develop a cost regression model in the
form just shown to determine the equation for the predicted value of y. Use this
regression equation to predict the value of y for .x = 3,000

b1

y = b0x b1 H 



y (cost in billions) x (weight in tons)

1.2 450
9.0 20,200
4.5 9,060
3.2 3,500

13.0 75,600
0.6 175
1.8 800
2.7 2,100

Solution

The equation

is not in the form of the general linear model, but it can be transformed by using
logarithms:

which takes on the general linear form

where

This equation requires that both x and y be recoded by taking the logarithm of
each.

log y log x

.0792 2.6532

.9542 4.3054

.6532 3.9571

.5051 3.5441
1.1139 4.8785
-.2218 2.2430

.2553 2.9031

.4314 3.3222

Using these data, the computer produces the following regression constant and
coefficient:

From these values, the equation of the predicted y value is determined to be

If x = 3,000, log x = 3.47712, and

then

The predicted value of y is $2.9644 billion for x = 3000 tons of weight.
Taking the antilog of = -1.25292 yields .055857. From this and b1 = .49606, theb¿0

yN = antilog(log  yN ) = antilog(.47194) = 2.9644

log yN = -1.25292 + .49606(3.47712) = .47194

log yN = -1.25292 + .49606 log x

b¿0 = -1.25292 b1 = .49606

 x¿ = log x
 b ¿0 = log b0

 y ¿ = log y

y ¿ = b ¿0 + b1x ¿

log y = log b0 + b1 log x + H

y = b0x
b1 H

14.1 Nonlinear Models: Mathematical Transformation 557
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model can be written in the original form:

Substituting into this formula also yields $2.9645 billion for the predicted
value of y.

x = 3000

y = (.055857)x .49606

14.1 PROBLEMS 14.1 Use the following data to develop a quadratic model to predict y from x. Develop
a simple regression model from the data and compare the results of the two
models. Does the quadratic model seem to provide any better predictability? Why
or why not?

x y x y

14 200 15 247
9 74 8 82
6 29 5 21

21 456 10 94
17 320

14.2 Develop a multiple regression model of the form

using the following data to predict y from x. From a scatter plot and Tukey’s ladder
of transformation, explore ways to recode the data and develop an alternative
regression model. Compare the results.

y x y x

2485 3.87 740 2.83
1790 3.22 4010 3.62

874 2.91 3629 3.52
2190 3.42 8010 3.92
3610 3.55 7047 3.86
2847 3.61 5680 3.75
1350 3.13 1740 3.19

14.3 The Publishers Information Bureau in New York City released magazine advertising
expenditure data compiled by leading national advertisers. The data were organized
by product type over several years. Shown here are data on total magazine advertising
expenditures and household equipment and supplies advertising expenditures.
Using these data, develop a regression model to predict total magazine advertising
expenditures by household equipment and supplies advertising expenditures and by
(household equipment and supplies advertising expenditures)2. Compare this
model to a regression model to predict total magazine advertising expenditures by
only household equipment and supplies advertising expenditures. Construct a scatter
plot of the data. Does the shape of the plot suggest some alternative models in light
of Tukey’s four-quadrant approach? If so, develop at least one other model and
compare the model to the other two previously developed.

Total Magazine Household Equipment 
Advertising Expenditures and Supplies Expenditures 

($ millions) ($ millions)

1193 34
2846 65
4668 98
5120 93
5943 102
6644 103

14.4 Dun & Bradstreet reports, among other things, information about new business
incorporations and number of business failures over several years. Shown here are data

y = b0b
x
1 H



on business failures and current liabilities of the failing companies over several
years. Use these data and the following model to predict current liabilities of the
failing companies by the number of business failures. Discuss the strength of the
model.

Now develop a different regression model by recoding x. Use Tukey’s four-quadrant
approach as a resource. Compare your models.

Rate of Business Current Liabilities 
Failures of Failing Companies 
(10,000) ($ millions)

44 1,888
43 4,380
42 4,635
61 6,955
88 15,611

110 16,073
107 29,269
115 36,937
120 44,724
102 34,724

98 39,126
65 44,261

14.5 Use the following data to develop a curvilinear model to predict y. Include both x1

and x2 in the model in addition to x 2
1 and x 2

2, and the interaction term x1x2.
Comment on the overall strength of the model and the significance of each 
predictor. Develop a regression model with the same independent variables as the
first model but without the interaction variable. Compare this model to the model
with interaction.

y x1 x2

47.8 6 7.1
29.1 1 4.2
81.8 11 10.0
54.3 5 8.0
29.7 3 5.7
64.0 9 8.8
37.4 3 7.1
44.5 4 5.4
42.1 4 6.5
31.6 2 4.9
78.4 11 9.1
71.9 9 8.5
17.4 2 4.2
28.8 1 5.8
34.7 2 5.9
57.6 6 7.8
84.2 12 10.2
63.2 8 9.4
39.0 3 5.7
47.3 5 7.0

14.6 What follows is Excel output from a regression model to predict y using x1, x2,
x 2

1, x 2
2, and the interaction term, x1x2. Comment on the overall strength of the

model and the significance of each predictor. The data follow the Excel output.
Develop a regression model with the same independent variables as the first
model but without the interaction variable. Compare this model to the model
with interaction.

y = b0b 
x
1 H

Problems 559
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y x1 x2 y x1 x2

34 120 190 45 96 245
56 105 240 34 79 288
78 108 238 23 66 312
90 110 250 89 88 315
23 78 255 76 80 320
34 98 230 56 73 335
45 89 266 43 69 335
67 92 270 23 75 250
78 95 272 45 63 372
65 85 288 56 74 360

SUMMARY OUTPUT

Regression Statistics

Multiple R  0.954
R Square  0.910
Adjusted R Square 0.878
Standard Error 7.544
Observations 20

ANOVA

SS MS
Significance

F

Regression 8089.274577 1617.855 0.00000073

F

28.43
Residual 796.725 56.909
Total

df

5
14
19 8886

Coefficients Standard Error t Stat P-value

Intercept 0.92 0.3716
X1
X2
X1Sq
X2Sq
X1*X2

464.4433
−10.5101 

−1.2212 
0.0357 

−0.0002 
0.0243

503.0955
6.0074 
1.9791 
0.0195 
0.0021 
0.0107

−1.75
−0.62 
1.84 

−0.08 
2.28

0.1021
0.5471 
0.0876 
0.9394 
0.0390

Some variables are referred to as qualitative variables (as opposed to quantitative vari-
ables) because qualitative variables do not yield quantifiable outcomes. Instead, qualitative
variables yield nominal- or ordinal-level information, which is used more to categorize
items. These variables have a role in multiple regression and are referred to as indicator, or
dummy variables. In this section, we will examine the role of indicator, or dummy, vari-
ables as predictors or independent variables in multiple regression analysis.

Indicator variables arise in many ways in business research. Mail questionnaire or
personal interview demographic questions are prime candidates because they tend to gen-
erate qualitative measures on such items as sex, geographic region, occupation, marital
status, level of education, economic class, political affiliation, religion, management/
nonmanagement status, buying/leasing a home, method of transportation, or type of broker.
In one business study, business researchers were attempting to develop a multiple regres-
sion model to predict the distances shoppers drive to malls in the greater Cleveland area.
One independent variable was whether the mall was located on the shore of Lake Erie. In
a second study, a site location model for pizza restaurants included indicator variables for
(1) whether the restaurant served beer and (2) whether the restaurant had a salad bar.

These indicator variables are qualitative in that no interval or ratio level measurement
is assigned to a response. For example, if a mall is located on the shore of Lake Erie,

INDICATOR (DUMMY) VARIABLES14.2



awarding it a score of 20 or 30 or 75 because of its location makes no sense. In terms of sex,
what value would you assign to a man or a woman in a regression study? Yet these types of
indicator, or dummy, variables are often useful in multiple regression studies and can be
included if they are coded in the proper format.

Most researchers code indicator variables by using 0 or 1. For example, in the shopping
mall study, malls located on the shore of Lake Erie could be assigned a 1, and all other malls
would then be assigned a 0. The assignment of 0 or 1 is arbitrary, with the number merely
holding a place for the category. For this reason, the coding is referred to as “dummy”
coding; the number represents a category by holding a place and is not a measurement.

Many indicator, or dummy, variables are dichotomous, such as male/female, salad
bar/no salad bar, employed/not employed, and rent/own. For these variables, a value of 1 is
arbitrarily assigned to one category and a value of 0 is assigned to the other category. Some
qualitative variables contain several categories, such as the variable “type of job,” which
might have the categories assembler, painter, and inspector. In this case, using a coding of
1, 2, and 3, respectively, is tempting. However, that type of coding creates problems for mul-
tiple regression analysis. For one thing, the category “inspector” would receive a value that
is three times that of “painter.” In addition, the values of 1, 2, and 3 indicate a hierarchy of
job types: assembler painter inspector. The proper way to code such indicator vari-
ables is with the 0, 1 coding. Two separate independent variables should be used to code the
three categories of type of job. The first variable is assembler, where a 1 is recorded if the per-
son’s job is assembler and a 0 is recorded if it is not. The second variable is painter, where a
1 is recorded if the person’s job is painter and a 0 is recorded if it is not. A variable should
not be assigned to inspector, because all workers in the study for whom a 1 was not recorded
either for the assembler variable or the painter variable must be inspectors. Thus, coding the
inspector variable would result in redundant information and is not necessary. This reason-
ing holds for all indicator variables with more than two categories. If an indicator variable
has c categories, then c – 1 dummy variables must be created and inserted into the regres-
sion analysis in order to include the indicator variable in the multiple regression.†

An example of an indicator variable with more than two categories is the result of the
following question taken from a typical questionnaire.

Your office is located in which region of the country?

______ Northeast ______ Midwest ______ South ______ West

Suppose a researcher is using a multiple regression analysis to predict the cost of doing
business and believes geographic location of the office is a potential predictor. How does
the researcher insert this qualitative variable into the analysis? Because c = 4 for this ques-
tion, three dummy variables are inserted into the analysis. Table 14.4 shows one possible
way this process works with 13 respondents. Note that rows 2, 7, and 11 contain all zeros,
which indicate that those respondents have offices in the West. Thus, a fourth dummy vari-
able for the West region is not necessary and, indeed, should not be included because the
information contained in such a fourth variable is contained in the other three variables.

A word of caution is in order. Because of degrees of freedom and interpretation consid-
erations, it is important that a multiple regression analysis have enough observations to han-
dle adequately the number of independent variables entered. Some researchers recommend
as a rule of thumb at least three observations per independent variable. If a qualitative vari-
able has multiple categories, resulting in several dummy independent variables, and if sev-
eral qualitative variables are being included in an analysis, the number of predictors can
rather quickly exceed the limit of recommended number of variables per number of obser-
vations. Nevertheless, dummy variables can be useful and are a way in which nominal or
ordinal information can be recoded and incorporated into a multiple regression model.

As an example, consider the issue of sex discrimination in the salary earnings of work-
ers in some industries. In examining this issue, suppose a random sample of 15 workers is

66
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†If c indicator variables are included in the analysis, no unique estimator of the regression coefficients can be
found. [J. Neter, M. H. Kuter, W. Wasserman, and C. Nachtsheim, Applied Linear Regression Models, 3rd ed.
Chicago: Richard D. Irwin, 1996.]

Northeast Midwest South
x1 x2 x3

1 0 0

0 0 0

1 0 0

0 0 1

0 1 0

0 1 0

0 0 0

0 0 1

1 0 0

1 0 0

0 0 0

0 1 0

0 0 1

TABLE 14.4  

Coding for the Indicator
Variable of Geographic
Location for Regression

Analysis
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drawn from a pool of employed laborers in a particular industry and the workers’ average
monthly salaries are determined, along with their age and gender. The data are shown in
Table 14.5. As sex can be only male or female, this variable is a dummy variable requiring
0, 1 coding. Suppose we arbitrarily let 1 denote male and 0 denote female. Figure 14.7 is the
multiple regression model developed from the data of Table 14.5 by using Minitab to 
predict the dependent variable, monthly salary, by two independent variables, age and sex.

The computer output in Figure 14.7 contains the regression equation for this model.

An examination of the t ratios reveals that the dummy variable “sex” has a regression
coefficient that is significant at = .001 (t = 8.58, p = .000). The overall model is significant
at = .001(F = 48.54, p = .000). The standard error of the estimate, se = .09679, indicates
that approximately 68% of the errors of prediction are within $96.79 (.09679 $1,000).
The R2 is relatively high at 89.0%, and the adjusted R2 is 87.2%.

The t value for sex indicates that it is a significant predictor of monthly salary in this
model. This significance is apparent when one looks at the effects of this dummy variable
another way. Figure 14.8 shows the graph of the regression equation when sex = 1 (male)
and the graph of the regression equation when sex = 0 (female). When sex = 1 (male), the
regression equation becomes

.732 + .111(Age) + .459(1) = 1.191 + .111(Age)

#;
a

a

Salary = 0.732 + 0.111 Age + 0.459 Sex

TABLE 14.5 

Data for the Monthly 
Salary Example

Monthly Salary Age Sex 
($1,000) (10 years) (1 � male, 0 � female)

1.548 3.2 1

1.629 3.8 1

1.011 2.7 0

1.229 3.4 0

1.746 3.6 1

1.528 4.1 1

1.018 3.8 0

1.190 3.4 0

1.551 3.3 1

0.985 3.2 0

1.610 3.5 1

1.432 2.9 1

1.215 3.3 0

.990 2.8 0

1.585 3.5 1

Regression Analysis: Salary versus Age, Sex 
The regression equation is
Salary = 0.732 + 0.111 Age + 0.459 Sex
Predictor Coef SE Coef T P
Constant 0.7321 0.2356 3.11 0.009
Age 0.11122 0.07208 1.54 0.149
Sex 0.45868 0.05346 8.58 0.000
S = 0.0967916 R-Sq = 89.0% R-Sq(adj) = 87.2%
Analysis of Variance
Source DF SS MS F P
Regression 2 0.90949 0.45474 48.54 0.000
Residual Error 12 0.11242 0.00937
Total 14 1.02191

Minitab Regression Output for
the Monthly Salary Example

FIGURE 14.7  



When sex = 0 (female), the regression equation becomes

The full regression model (with both predictors) has a response surface that is a plane
in a three-dimensional space. However, if a value of 1 is entered for sex into the full regres-
sion model, as just shown, the regression model is reduced to a line passing through the
plane formed by monthly salary and age. If a value of 0 is entered for sex, as shown, the full
regression model also reduces to a line passing through the plane formed by monthly salary
and age. Figure 14.8 displays these two lines. Notice that the only difference in the two lines
is the y-intercept. Observe the monthly salary with male sex, as depicted by ●, versus the
monthly salary with female sex, depicted by ●. The difference in the y-intercepts of these two
lines is .459, which is the value of the regression coefficient for sex. This intercept figure sig-
nifies that, on average, men earn $459 per month more than women for this population.

.732 + .111(Age) + .459(0) = .732 + .111(Age).

.90

2.8

Age (in decades)
M

on
th

ly
 S

al
ar

y

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

$1.80

3.0 3.2 3.4 3.6 3.8 4.0

Male

Female

Regression Model for Male
and Female Sex

FIGURE 14.8 
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STATISTICS IN BUSINESS TODAY

Predicting Export Intensity of Chinese
Manufacturing Firms Using Multiple
Regression Analysis
According to business researchers Hongxin Zhao and
Shaoming Zou, little research has been done on the impact
of external or uncontrollable variables on the export per-
formance of a company. These two researchers conducted
a study of Chinese manufacturing firms and used multiple
regression to determine whether both domestic market
concentration and firm location are good predictors of a
firm’s export intensity. The study included 999 Chinese
manufacturing firms that exported. The dependent vari-
able was “export intensity,” which was defined to be the
proportion of production output that is exported and was
computed by dividing the firm’s export value by its pro-
duction output value. The higher the proportion was, the
higher the export intensity. Zhao and Zou used covariate
techniques (beyond the scope of this text) to control for the
fact that companies in the study varied by size, capital
intensity, innovativeness, and industry. The independent
variables were industry concentration and location. Industry
concentration was computed as a ratio, with higher values

indicating more concentration in the industry. The location
variable was a composite index taking into account total
freight volume, available modes of transportation, number
of telephones, and size of geographic area.

The multiple regression model produced an R2 of
approximately 52%. Industry concentration was a statisti-
cally significant predictor at = .01, and the sign on the
regression coefficient indicated that a negative relationship
may exist between industry concentration and export inten-
sity. It means export intensity is lower in highly concentrated
industries and higher in lower concentrated industries. The
researchers believe that in a more highly concentrated indus-
try, the handful of firms dominating the industry will stifle
the export competitiveness of firms. In the absence of dom-
inating firms in a more fragmented setting, more competi-
tion and an increasing tendency to export are noted. The
location variable was also a significant predictor at = .01.
Firms located in coastal areas had higher export intensities
than did those located in inland areas.

Source: Hongxin Zhao and Shaoming Zou, “The Impact of Industry
Concentration and Firm Location on Export Propensity and Intensity: An
Empirical Analysis of Chinese Manufacturing Firms,” Journal of
International Marketing, vol. 10, no. 1 (2002), pp. 52–71.

a

a
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14.2 PROBLEMS 14.7 Analyze the following data by using a multiple regression computer software package
to predict y using x1 and x2. Notice that x2 is a dummy variable. Discuss the output
from the regression analysis; in particular, comment on the predictability of the
dummy variable.

y x1 x2

16.8 27 1
13.2 16 0
14.7 13 0
15.4 11 1
11.1 17 0
16.2 19 1
14.9 24 1
13.3 21 0
17.8 16 1
17.1 23 1
14.3 18 0
13.9 16 0

14.8 Given here are the data from a dependent variable and two independent variables.
The second independent variable is an indicator variable with several categories.
Hence, this variable is represented by x2, x3, and x4. How many categories are
needed in total for this independent variable? Use a computer to perform a multiple
regression analysis on this data to predict y from the x values. Discuss the output
and pay particular attention to the dummy variables.

y x1 x2 x3 x4

11 1.9 1 0 0
3 1.6 0 1 0
2 2.3 0 1 0
5 2.0 0 0 1
9 1.8 0 0 0

14 1.9 1 0 0
10 2.4 1 0 0

8 2.6 0 0 0
4 2.0 0 1 0
9 1.4 0 0 0

11 1.7 1 0 0
4 2.5 0 0 1
6 1.0 1 0 0

10 1.4 0 0 0
3 1.9 0 1 0
4 2.3 0 1 0
9 2.2 0 0 0
6 1.7 0 0 1

14.9 The Minitab output displayed here is the result of a multiple regression analysis with
three independent variables. Variable x1 is a dummy variable. Discuss the computer
output and the role x1 plays in this regression model.

The regression equation is
Y = 121 + 13.4 X1 - 0.632 X2 + 1.42 X3
Predictor Coef Stdev T p
Constant 121.31 11.56 10.50 .000

X1 13.355 4.714 2.83 .014
X2 -0.6322 0.2270 -2.79 .015
X3 1.421 3.342 0.43 .678

S = 7.041 R-sq = 79.5% R-sq(adj) = 74.7%



Analysis of Variance
Source df SS MS F p
Regression 3 2491.98 830.66 16.76 .000
Error 13 644.49 49.58
Total 16 3136.47

14.10 Given here is Excel output for a multiple regression model that was developed to pre-
dict y from two independent variables, x1 and x2. Variable x2 is a dummy variable.
Discuss the strength of the multiple regression model on the basis of the output.
Focus on the contribution of the dummy variable. Plot x1 and y with x2 as 0, and then
plot x1 and y with x2 as 1. Compare the two lines and discuss the differences.
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.623
R Square 0.388
Adjusted R Square 0.341
Standard Error 11.744
Observations 29

ANOVA

SS MS
Significance

F

Regression 2270.11 1135.05 0.0017

F

8.23
Residual 3585.75 137.91
Total

df

2
26
28 5855.86

Coefficients Standard Error t Stat P-value

Intercept 6.46 0.00000076
X1
X2

41.225
1.081

−18.404

6.3800
1.3530
4.5470

0.80 
−4.05

0.4316
0.0004

14.11 Falvey, Fried, and Richards developed a multiple regression model to predict the
average price of a meal at New Orleans restaurants. The variables explored included
such indicator variables as the following: Accepts reservations, Accepts credit cards,
Has its own parking lot, Has a separate bar or lounge, Has a maitre d’, Has a dress
code, Is candlelit, Has live entertainment, Serves alcoholic beverages, Is a steakhouse,
Is in the French Quarter. Suppose a relatively simple model is developed to predict
the average price of a meal at a restaurant in New Orleans from the number of
hours the restaurant is open per week, the probability of being seated upon arrival,
and whether the restaurant is located in the French Quarter. Use the following data
and a computer to develop such a model. Comment on the output.

Price Hours Probability of Being Seated French Quarter

$ 8.52 65 .62 0
21.45 45 .43 1
16.18 52 .58 1

6.21 66 .74 0
12.19 53 .19 1
25.62 55 .49 1
13.90 60 .80 0
18.66 72 .75 1

5.25 70 .37 0
7.98 55 .64 0

12.57 48 .51 1
14.85 60 .32 1

8.80 52 .62 0
6.27 64 .83 0
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14.12 A researcher gathered 155 observations on four variables: job satisfaction,
occupation, industry, and marital status. She wants to develop a multiple regression
model to predict job satisfaction by the other three variables. All three predictor
variables are qualitative variables with the following categories.

1. Occupation: accounting, management, marketing, finance

2. Industry: manufacturing, healthcare, transportation

3. Marital status: married, single

How many variables will be in the regression model? Delineate the number of
predictors needed in each category and discuss the total number of predictors.

To this point in the chapter, we have explored various types of multiple regression models.
We evaluated the strengths of regression models and learned how to understand more
about the output from multiple regression computer packages. In this section we examine
procedures for developing several multiple regression model options to aid in the decision-
making process.

Suppose a researcher wants to develop a multiple regression model to predict the
world production of crude oil. The researcher realizes that much of the world crude oil
market is driven by variables related to usage and production in the United States. The
researcher decides to use as predictors the following five independent variables.

1. U.S. energy consumption

2. Gross U.S. nuclear electricity generation

3. U.S. coal production

4. Total U.S. dry gas (natural gas) production

5. Fuel rate of U.S.-owned automobiles

The researcher measured data for each of these variables for the year preceding each
data point of world crude oil production, figuring that the world production is driven by the
previous year’s activities in the United States. It would seem that as the energy consumption
of the United States increases, so would world production of crude oil. In addition, it makes
sense that as nuclear electricity generation, coal production, dry gas production, and fuel
rates increase, world crude oil production would decrease if energy consumption stays
approximately constant.

Table 14.6 shows data for the five independent variables along with the dependent vari-
able, world crude oil production. Using the data presented in Table 14.6, the researcher
attempted to develop a multiple regression model using five different independent variables.
The result of this process was the Minitab output in Figure 14.9. Examining the output, the
researcher can reach some conclusions about that particular model and its variables.

The output contains an R2 value of 92.1%, a standard error of the estimate of 1.215,
and an overall significant F value of 46.62. Notice from Figure 14.9 that the t ratios indi-
cate that the regression coefficients of four of the predictor variables, nuclear, coal, dry gas,
and fuel rate, are not significant at = .05. If the researcher were to drop these four vari-
ables out of the regression analysis and rerun the model with the other predictor only, what
would happen to the model? What if the researcher ran a regression model with only three
predictors? How would these models compare to the full model with all five predictors? Are
all the predictors necessary?

Developing regression models for business decision making involves at least two con-
siderations. The first is to develop a regression model that accounts for the most variation
of the dependent variable—that is, develop models that maximize the explained propor-
tion of the deviation of the y values. At the same time, the regression model should be as
parsimonious (simple and economical) as possible. The more complicated a quantitative
model becomes, the harder it is for managers to understand and implement the model. In

a
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TABLE 14.6  

Data for Multiple Regression
Model to Predict Crude 

Oil Production

World Crude Oil U.S. Energy U.S. Nuclear U.S. Coal U.S. Total U.S. Fuel
Production Consumption Electricity Gross Dry Gas Rate for 

(million (quadrillion (billion Production Production Automobiles 
barrels BTUs generation kilowatt- (million (trillion (miles per 

per day) per year) hours) short-tons) cubic feet) gallon)

55.7 74.3 83.5 598.6 21.7 13.4

55.7 72.5 114.0 610.0 20.7 13.6

52.8 70.5 172.5 654.6 19.2 14.0

57.3 74.4 191.1 684.9 19.1 13.8

59.7 76.3 250.9 697.2 19.2 14.1

60.2 78.1 276.4 670.2 19.1 14.3

62.7 78.9 255.2 781.1 19.7 14.6

59.6 76.0 251.1 829.7 19.4 16.0

56.1 74.0 272.7 823.8 19.2 16.5

53.5 70.8 282.8 838.1 17.8 16.9

53.3 70.5 293.7 782.1 16.1 17.1

54.5 74.1 327.6 895.9 17.5 17.4

54.0 74.0 383.7 883.6 16.5 17.5

56.2 74.3 414.0 890.3 16.1 17.4

56.7 76.9 455.3 918.8 16.6 18.0

58.7 80.2 527.0 950.3 17.1 18.8

59.9 81.4 529.4 980.7 17.3 19.0

60.6 81.3 576.9 1029.1 17.8 20.3

60.2 81.1 612.6 996.0 17.7 21.2

60.2 82.2 618.8 997.5 17.8 21.0

60.2 83.9 610.3 945.4 18.1 20.6

61.0 85.6 640.4 1033.5 18.8 20.8

62.3 87.2 673.4 1033.0 18.6 21.1

64.1 90.0 674.7 1063.9 18.8 21.2

66.3 90.6 628.6 1089.9 18.9 21.5

67.0 89.7 666.8 1109.8 18.9 21.6

Regression Analysis: CrOilPrd Versus USEnCons, USNucGen, ...
The regression equation is
CrOilPrd = 2.71 + 0.836 USEnCons - 0.00654 USNucGen + 0.00983

USCoalPr – 0.143 USDryGas - 0.734 FuelRate
Predictor Coef SE Coef T P
Constant 2.708 8.909 0.30 0.764
USEnCons 0.8357 0.1802 4.64 0.000
USNucGen –0.006544 0.009854 –0.66 0.514
USCoalPr 0.009825 0.007286 1.35 0.193
USDryGas –0.1432 0.4484 –0.32 0.753
FuelRate –0.7341 0.5488 –1.34 0.196
S = 1.21470 R-Sq = 92.1%  R-Sq(adj) = 90.1%
Analysis of Variance
Source DF SS MS F P
Regression 5 343.916 68.783 46.62 0.000
Residual Error 20 29.510 1.476
Total 25 373.427

Minitab Output of Regression
for Crude Oil Production

Example

FIGURE 14.9 

addition, as more variables are included in a model, it becomes more expensive to gather
historical data or update present data for the model. These two considerations (dependent
variable explanation and parsimony of the model) are quite often in opposition to each
other. Hence the business researcher, as the model builder, often needs to explore many
model options.
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In the world crude oil production regression model, if three variables explain the devi-
ation of world crude oil production nearly as well as five variables, the simpler model is
more attractive. How might researchers conduct regression analysis so that they can exam-
ine several models and then choose the most attractive one? The answer is to use search
procedures.

Search Procedures

Search procedures are processes whereby more than one multiple regression model is devel-
oped for a given database, and the models are compared and sorted by different criteria,
depending on the given procedure. Virtually all search procedures are done on a computer.
Several search procedures are discussed in this section, including all possible regressions,
stepwise regression, forward selection, and backward elimination.

All Possible Regressions

The all possible regressions search procedure computes all possible linear multiple regres-
sion models from the data using all variables. If a data set contains k independent variables,
all possible regressions will determine 2k - 1 different models.

For the crude oil production example, the procedure of all possible regressions would
produce 25 - 1 = 31 different models from the k = 5 independent variables. With k = 5 pre-
dictors, the procedure produces all single-predictor models, all models with two predictors,
all models with three predictors, all models with four predictors, and all models with five
predictors, as shown in Table 14.7.

The all possible regressions procedure enables the business researcher to examine
every model. In theory, this method eliminates the chance that the business researcher will
never consider some models, as can be the case with other search procedures. On the other
hand, the search through all possible models can be tedious, time-consuming, inefficient,
and perhaps overwhelming.

Stepwise Regression

Perhaps the most widely known and used of the search procedures is stepwise regression.
Stepwise regression is a step-by-step process that begins by developing a regression model
with a single predictor variable and adds and deletes predictors one step at a time, examining
the fit of the model at each step until no more significant predictors remain outside the
model.

STEP 1. In step 1 of a stepwise regression procedure, the k independent variables are
examined one at a time by developing a simple regression model for each 
independent variable to predict the dependent variable. The model containing the
largest absolute value of t for an independent variable is selected, and the 

TABLE 14.7 

Predictors for All Possible
Regressions with Five
Independent Variables

Single Predictor Two Predictors Three Predictors Four Predictors Five Predictors

x1 x1, x2 x1, x2, x3 x1, x2, x3, x4 x1, x2, x3, x4, x5

x2 x1, x3 x1, x2, x4 x1, x2, x3, x5

x3 x1, x4 x1, x2, x5 x1, x2, x4, x5

x4 x1, x5 x1, x3, x4 x1, x3, x4, x5

x5 x2, x3 x1, x3, x5 x2, x3, x4, x5

x2, x4 x1, x4, x5

x2, x5 x2, x3, x4

x3, x4 x2, x3, x5

x3, x5 x2, x4, x5

x4, x5 x3, x4, x5



independent variable associated with the model is selected as the “best” single
predictor of y at the first step. Some computer software packages use an F value
instead of a t value to make this determination. Most of these computer programs
allow the researcher to predetermine critical values for t or F, but also contain a
default value as an option. If the first independent variable selected at step 1 is
denoted x1, the model appears in the form

If, after examining all possible single-predictor models, it is concluded that
none of the independent variables produces a t value that is significant at , then
the search procedure stops at step 1 and recommends no model.

STEP 2. In step 2, the stepwise procedure examines all possible two-predictor regression
models with x1 as one of the independent variables in the model and determines
which of the other k - 1 independent variables in conjunction with x1 produces
the highest absolute t value in the model. If this other variable selected from the
remaining independent variables is denoted x2 and is included in the model
selected at step 2 along with x1, the model appears in the form

At this point, stepwise regression pauses and examines the t value of the
regression coefficient for x1. Occasionally, the regression coefficient for x1 will
become statistically nonsignificant when x2 is entered into the model. In that case,
stepwise regression will drop x1 out of the model and go back and examine which
of the other k - 2 independent variables, if any, will produce the largest significant
absolute t value when that variable is included in the model along with x2. If no
other variables show significant t values, the procedure halts. It is worth noting
that the regression coefficients are likely to change from step to step to account
for the new predictor being added in the process. Thus, if x1 stays in the model at
step 2, the value of b1 at step 1 will probably be different from the value of b1 at
step 2.

STEP 3. Step 3 begins with independent variables, x1 and x2 (the variables that were finally
selected at step 2), in the model. At this step, a search is made to determine which
of the k - 2 remaining independent variables in conjunction with x1 and x2 pro-
duces the largest significant absolute t value in the regression model. Let us
denote the one that is selected as x3. If no significant t values are acknowledged at
this step, the process stops here and the model determined in step 2 is the final
model. At step 3, the model appears in the form

In a manner similar to step 2, stepwise regression now goes back and examines
the t values of the regression coefficients of x1 and x2 in this step 3 model. If either
or both of the t values are now nonsignificant, the variables are dropped out of the
model and the process calls for a search through the remaining k - 3 independent
variables to determine which, if any, in conjunction with x3 produce the largest 
significant t values in this model. The stepwise regression process continues step by
step until no significant independent variables remain that are not in the model.

In the crude oil production example, recall that Table 14.6 contained data that can be
used to develop a regression model to predict world crude oil production from as many as
five different independent variables. Figure 14.9 displayed the results of a multiple regres-
sion analysis to produce a model using all five predictors. Suppose the researcher were to
use a stepwise regression search procedure on these data to find a regression model. Recall
that the following independent variables were being considered.

1. U.S. energy consumption

2. U.S. nuclear generation

3. U.S. coal production

yN = b0 + b1x1 + b2x2 + b3x3

yN = b0 + b1x1 + b2x2

a

yN = b0 + b1x1

14.3 Model-Building: Search Procedures 569
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4. U.S. dry gas production

5. U.S. fuel rate

STEP 1. Each of the independent variables is examined one at a time to determine the
strength of each predictor in a simple regression model. The results are reported
in Table 14.8.

Note that the independent variable “energy consumption” was selected as the
predictor variable, x1, in step 1. An examination of Table 14.8 reveals that energy
consumption produced the largest absolute t value (11.77) of the single predictors.
By itself, energy consumption accounted for 85.2% of the variation of the y values
(world crude oil production). The regression equation taken from the computer
output for this model is

where
y = world crude oil production

x1 = U.S. energy consumption

STEP 2. In step 2, x1 was retained initially in the model and a search was conducted
among the four remaining independent variables to determine which of those
variables in conjunction with x1 produced the largest significant t value.
Table 14.9 reports the results of this search.

The information in Table 14.9 shows that the model selected in step 2
includes the independent variables “energy consumption” and “fuel rate.” Fuel
rate has the largest absolute t value (-3.75), and it is significant at = .05. Other
variables produced varying sizes of t values. The model produced at step 2 has an
R2 of 90.8%. These two variables taken together account for almost 91% of the
variation of world crude oil production in this sample.

From other computer information, it is ascertained that the t value for the x1

variable in this model is 11.91, which is even higher than in step 1. Therefore, x1

will not be dropped from the model by the stepwise regression procedure. The
step 2 regression model from the computer output is

y = 7.14 + 0.772x1 - 0.517x2

a

y = 13.075 + .580x1

TABLE 14.8

Step 1: Results of Simple
Regression Using Each
Independent Variable to
Predict Oil Production

Dependent 
Variable

Oil production

Oil production

Oil production

Oil production

Oil production

Independent 
Variable

Energy consumption

Nuclear

Coal

Dry gas

Fuel rate
Variable selected to serve as x1

t Ratio R2

11.77

3.91

1.08

3.54

4.43

85.2%

45.0

38.9

4.6

34.2

TABLE 14.9 

Step 2: Regression Results
with Two Predictors

Dependent 
Variable 

y

Oil production

Oil production

Oil production

Oil production

Independent 
Variable 

x1

Independent 
Variable 

x2

Energy consumption

Energy consumption

Energy consumption

Energy consumption

Variables selected at step 2

t Ratio 
of x2 R2

Nuclear

Dry gas

Fuel rate

Coal
−3.60 90.6%

88.3

87.9

90.8

−2.44

2.23

−3.75



where
y = world crude oil production

x1 = U.S. energy consumption
x2 = U.S. fuel rate

Note that the regression coefficient for x1 changed from .580 at step 1 in the
model to .772 at step 2.

The R2 for the model in step 1 was 85.2%. Notice that none of the R2 values produced
from step 2 models is less than 85.2%. The reason is that x1 is still in the model, so the R2

at this step must be at least as high as it was in step 1, when only x1 was in the model. In
addition, by examining the R2 values in Table 14.9, you can get a feel for how much the
prospective new predictor adds to the model by seeing how much R2 increases from 85.2%.
For example, with x2 (fuel rate) added to the model, the R2 goes up to 90.8%. However,
adding the variable “dry gas” to x1 increases R2 very little (it goes up 87.9%).

STEP 3. In step 3, the search procedure continues to look for an additional predictor 
variable from the three independent variables remaining out of the solution.
Variables x1 and x2 are retained in the model. Table 14.10 reports the result of this
search.

In this step, regression models are explored that contain x1 (energy 
consumption) and x2 (fuel rate) in addition to one of the three remaining 
variables. None of the three models produces t ratios that are significant at = .05.
No new variables are added to the model produced in step 2. The stepwise
regression process ends.

Figure 14.10 shows the Minitab stepwise regression output for the world crude oil
production example. The results printed in the table are virtually identical to the step-by-step
results discussed in this section but are in a different format.

a

TABLE 14.10

Step 3: Regression Results
with Three Predictors

Dependent 
Variable 

y

Oil Production Energy consumption

Energy consumption

Energy consumption

Oil Production

Oil Production

Independent 
Variable 

x1

Independent 
Variable 

x2

Independent 
Variable 

x3

t Ratio 
of x3 R2

Fuel rate Nuclear

Coal

Dry gas

Fuel rate

Fuel rate

No t ratio is significant at a  = .05.
No new variables are added to the model.

−0.43

−0.46

1.71

90.9%

91.9

90.9

Stepwise Regression: CrOilPrd versus USEnCons, USNucGen, ...
Alpha-to-Enter: 0.1 Alpha-to-Remove: 0.1
Response is CrOilPrd on 5 predictors, with N = 26
Step 1 2
Constant 13.075 7.140
USEnCons 0.580 0.772
T-Value 11.77 11.91
P-Value 0.000 0.000
FuelRate –0.52
T-Value –3.75
P-Value 0.001
S 1.52 1.22
R-Sq 85.24 90.83
R-Sq(adj) 84.62 90.03

Minitab Stepwise Regression
Output for the Crude Oil

Production Example

FIGURE 14.10
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Each column in Figure 14.10 contains information about the regression model at each
step. Thus, column 1 contains data on the regression model for step 1. In each column at
each step you can see the variables in the model. As an example, at step 2, energy consump-
tion and fuel rate are in the model. The numbers above the t ratios are the regression coef-
ficients. The coefficients and the constant in column 2, for example, yield the regression
model equation values for step 2.

The values of R2 (R-Sq) and the standard error of the estimate (S) are displayed on the
bottom row of the output along with the adjusted value of R2.

Forward Selection

Another search procedure is forward selection. Forward selection is essentially the same as
stepwise regression, but once a variable is entered into the process, it is never dropped out.
Forward selection begins by finding the independent variable that will produce the largest
absolute value of t (and largest R2) in predicting y. The selected variable is denoted here as
x1 and is part of the model

Forward selection proceeds to step 2. While retaining x1, it examines the other k – 1
independent variables and determines which variable in the model with x1 produces the
highest absolute value of t that is significant. To this point, forward selection is the same as
stepwise regression. If this second variable is designated x2, the model is

At this point, forward selection does not reexamine the t value of x1. Both x1 and x2

remain in the model as other variables are examined and included. When independent
variables are correlated in forward selection, the overlapping of information can limit the
potential predictability of two or more variables in combination. Stepwise regression takes
this into account, in part, when it goes back to reexamine the t values of predictors already
in the model to determine whether they are still significant predictors of y given the vari-
ables that have now entered the process. In other words, stepwise regression acknowledges
that the strongest single predictor of y that is selected at step 1 may not be a significant pre-
dictor of y when taken in conjunction with other variables.

Using a forward selection procedure to develop multiple regression models for the world
crude oil production example would result in the same outcome as that provided by stepwise
regression because neither x1 nor x2 were removed from the model in that particular stepwise
regression. The difference in the two procedures is more apparent in examples where variables
selected at earlier steps in the process are removed during later steps in stepwise regression.

Backward Elimination

The backward elimination search procedure is a step-by-step process that begins with the
“full” model (all k predictors). Using the t values, a search is made to determine whether any
nonsignificant independent variables are in the model. If no nonsignificant predictors are
found, the backward process ends with the full model. If nonsignificant predictors are
found, the predictor with the smallest absolute value of t is eliminated and a new model is
developed with k – 1 independent variables.

This model is then examined to determine whether it contains any independent vari-
ables with nonsignificant t values. If it does, the predictor with the smallest absolute t value
is eliminated from the process and a new model is developed for the next step.

This procedure of identifying the smallest nonsignificant t value and eliminating that
variable continues until all variables left in the model have significant t values. Sometimes this
process yields results similar to those obtained from forward selection and other times it does
not. A word of caution is in order. Backward elimination always begins with all possible pre-
dictors in the model. Sometimes the sample data do not provide enough observations to

yN = b0 + b1x1 + b2x2

yN = b0 + b1x1

yN = 7.140 + 0.772x1 - 0.52x2



justify the use of all possible predictors at the same time in the model. In this case, back-
ward elimination is not a suitable option with which to build regression models.

The following steps show how the backward elimination process can be used to
develop multiple regression models to predict world crude oil production using the data
and five predictors displayed in Table 14.6.

STEP 1. A full model is developed with all predictors. The results are shown in Table 14.11.
The R2 for this model is 92.1%. A study of Table 14.11 reveals that the predictor
“dry gas” has the smallest absolute value of a nonsignificant t (t = -.32, p = .753).
In step 2, this variable will be dropped from the model.

STEP 2. A second regression model is developed with k - 1 = 4 predictors. Dry gas has
been eliminated from consideration. The results of this multiple regression 
analysis are presented in Table 14.12. The computer results in Table 14.12 indicate
that the variable “nuclear” has the smallest absolute value of a nonsignificant t of
the variables remaining in the model (t = -.64, p = .528). In step 3, this variable
will be dropped from the model.

STEP 3. A third regression model is developed with k - 2 = 3 predictors. Both nuclear and
dry gas variables have been removed from the model. The results of this multiple
regression analysis are reported in Table 14.13. The computer results in Table 14.13
indicate that the variable “coal” has the smallest absolute value of a nonsignificant t
of the variables remaining in the model (t = 1.71, p = .102). In step 4, this variable
will be dropped from the model.

STEP 4. A fourth regression model is developed with k - 3 = 2 predictors. Nuclear, dry gas,
and coal variables have been removed from the model. The results of this multiple
regression analysis are reported in Table 14.14. Observe that all p-values are less
than = .05, indicating that all t values are significant, so no additional independent
variables need to be removed. The backward elimination process ends with two
predictors in the model. The final model obtained from this backward elimination
process is the same model as that obtained by using stepwise regression.

a

Predictor Coefficient t Ratio p

Nuclear −.00654

Energy consumption .8357

Dry gas −.1432
Fuel rate

Variable to be dropped from the model

−.7341

Coal .00983
−0.66

4.64

−0.32

−1.34

1.35
.514

.000

.753

.196

.193

TABLE 14.11

Step 1: Backward Elimination, Full Model

Predictor Coefficient t Ratio p

Coal .010479

Energy consumption .75394

Variable to be dropped from the model

Fuel rate −1.0283

1.71

11.94

−3.14

.102

.000

.005

TABLE 14.13

Step 3: Backward Elimination, Three Predictors

TABLE 14.12

Step 2: Backward Elimination, Four Predictors

Predictor Coefficient t Ratio p

Nuclear −.004261

Energy consumption .7843

Fuel rate −.8253

Variable to be dropped from the model

Coal .010933

−0.64

9.85

−1.80

1.74

.528

.000

.086

.096

TABLE 14.14

Step 4: Backward Elimination, Two Predictors

Predictor Coefficient t Ratio p

Fuel rate −.5173

Energy consumption .77201

All variables are significant at  = .05. 
No variables will be dropped from this model.
The process stops.

−3.75

11.91

.001

.000
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14.3 PROBLEMS 14.13 Use a stepwise regression procedure and the following data to develop a multiple
regression model to predict y. Discuss the variables that enter at each step,
commenting on their t values and on the value of R2.

y x1 x2 x3 y x1 x2 x3

21 5 108 57 22 13 105 51
17 11 135 34 20 10 111 43
14 14 113 21 16 20 140 20
13 9 160 25 13 19 150 14
19 16 122 43 18 14 126 29
15 18 142 40 12 21 175 22
24 7 93 52 23 6 98 38

17 9 128 38 18 15 129 40

y x1 x2 x3 x4

101 2 77 1.2 42
127 4 72 1.7 26

98 9 69 2.4 47
79 5 53 2.6 65

118 3 88 2.9 37
114 1 53 2.7 28
110 3 82 2.8 29

94 2 61 2.6 22
96 8 60 2.4 48
73 6 64 2.1 42

108 2 76 1.8 34
124 5 74 2.2 11

82 6 50 1.5 61
89 9 57 1.6 53
76 1 72 2.0 72

109 3 74 2.8 36
123 2 99 2.6 17

125 6 81 2.5 48

14.14 Given here are data for a dependent variable and four potential predictors. Use
these data and a stepwise regression procedure to develop a multiple regression
model to predict y. Examine the values of t and R2 at each step and comment on
those values. How many steps did the procedure use? Why do you think the 
process stopped?

14.15 The computer output given here is the result of a stepwise multiple regression
analysis to predict a dependent variable by using six predictor variables. The 
number of observations was 108. Study the output and discuss the results. How
many predictors ended up in the model? Which predictors, if any, did not enter 
the model?

STEPWISE REGRESSION OF Y ON 6 PREDICTORS, WITH N = 108
STEP 1 2 3 4
CONSTANT 8.71 6.82 6.57 5.96
X3 –2.85 –4.92 –4.97 –5.00
T-RATIO 2.11 2.94 3.04 3.07
X1 4.42 3.72 3.22
T-RATIO 2.64 2.20 2.05
X2 1.91 1.78
T-RATIO 2.07 2.02
X6 1.56
T-RATIO 1.98
S 3.81 3.51 3.43 3.36
R-SQ 29.20 49.45 54.72 59.29



14.16 Study the output given here from a stepwise multiple regression analysis to predict
y from four variables. Comment on the output at each step.

Problems 575

STEPWISE REGRESSION OF Y ON 4 PREDICTORS,WITH N = 63
STEP 1 2
CONSTANT 27.88 22.30
X3 0.89
T-RATIO 2.26
X2 12.38
T-RATIO 2.64
X4 0.0047
T-RATIO 2.01
S 16.52 9.47
R-SQ 42.39 68.20

14.17 The National Underwriter Company in Cincinnati, Ohio, publishes property and
casualty insurance data. Given here is a portion of the data published. These data
include information from the U.S. insurance industry about (1) net income after
taxes, (2) dividends to policyholders, (3) net underwriting gain/loss, and (4) 
premiums earned. Use the data and stepwise regression to predict premiums 
earned from the other three variables.

Premiums Net Underwriting 
Earned Income Dividends Gain/Loss

30.2 1.6 .6 .1
47.2 .6 .7 -3.6
92.8 8.4 1.8 -1.5
95.4 7.6 2.0 -4.9

100.4 6.3 2.2 -8.1
104.9 6.3 2.4 -10.8
113.2 2.2 2.3 -18.2
130.3 3.0 2.4 -21.4
161.9 13.5 2.3 -12.8
182.5 14.9 2.9 -5.9

193.3 11.7 2.9 -7.6

14.18 The U.S. Energy Information Administration releases figures in their publication,
Monthly Energy Review, about the cost of various fuels and electricity. Shown here
are the figures for four different items over a 12-year period. Use the data and 
stepwise regression to predict the cost of residential electricity from the cost of
residential natural gas, residual fuel oil, and leaded regular gasoline. Examine the
data and discuss the output.

Leaded
Residential Residential Residual Regular
Electricity Natural Gas Fuel Oil Gasoline 

(kWh) (1000 ft3) (gal) (gal)

2.54 1.29 .21 .39
3.51 1.71 .31 .57
4.64 2.98 .44 .86
5.36 3.68 .61 1.19
6.20 4.29 .76 1.31
6.86 5.17 .68 1.22
7.18 6.06 .65 1.16
7.54 6.12 .69 1.13
7.79 6.12 .61 1.12
7.41 5.83 .34 .86
7.41 5.54 .42 .90

7.49 4.49 .33 .90



576 Chapter 14 Building Multiple Regression Models

One problem that can arise in multiple regression analysis is multicollinearity.
Multicollinearity is when two or more of the independent variables of a multiple regression
model are highly correlated. Technically, if two of the independent variables are correlated,
we have collinearity; when three or more independent variables are correlated, we have
multicollinearity. However, the two terms are frequently used interchangeably.

The reality of business research is that most of the time some correlation between pre-
dictors (independent variables) will be present. The problem of multicollinearity arises
when the intercorrelation between predictor variables is high. This relationship causes sev-
eral other problems, particularly in the interpretation of the analysis.

1. It is difficult, if not impossible, to interpret the estimates of the regression 
coefficients.

2. Inordinately small t values for the regression coefficients may result.

3. The standard deviations of regression coefficients are overestimated.

4. The algebraic sign of estimated regression coefficients may be the opposite of
what would be expected for a particular predictor variable.

The problem of multicollinearity can arise in regression analysis in a variety of busi-
ness research situations. For example, suppose a model is being developed to predict
salaries in a given industry. Independent variables such as years of education, age, years in
management, experience on the job, and years of tenure with the firm might be considered
as predictors. It is obvious that several of these variables are correlated (virtually all of these
variables have something to do with number of years, or time) and yield redundant infor-
mation. Suppose a financial regression model is being developed to predict bond market
rates by such independent variables as Dow Jones average, prime interest rates, GNP, pro-
ducer price index, and consumer price index. Several of these predictors are likely to be
intercorrelated.

In the world crude oil production example used in section 14.3, several of the inde-
pendent variables are intercorrelated, leading to the potential of multicollinearity prob-
lems. Table 14.15 gives the correlations of the predictor variables for this example. Note
that r values are quite high (r .90) for fuel rate and nuclear (.972), fuel rate and coal
(.968), and coal and nuclear (.952).

Table 14.15 shows that fuel rate and coal production are highly correlated. Using fuel
rate as a single predictor of crude oil production produces the following simple regression
model.

Notice that the estimate of the regression coefficient, .7838, is positive, indicating that
as fuel rate increases, oil production increases. Using coal as a single predictor of crude oil
production yields the following simple regression model.

yN = 45.072 + .0157(coal)

yN = 44.869 + .7838(fuel rate)

7

MULTICOLLINEARITY14.4

TABLE 14.15

Correlations Among Oil
Production Predictor Variables

Energy
Consumption Nuclear Coal Dry Gas Fuel Rate

Energy consumption 1 .856 .791 .057 .791

Nuclear .856 1 .952 -.404 .972

Coal .791 .952 1 -.448 .968

Dry gas .057 -.404 -.448 1 -.423

Fuel rate .796 .972 .968 -.423 1
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The multiple regression model developed using both fuel rate and coal to predict
crude oil production is

Observe that this regression model indicates a negative relationship between fuel rate
and oil production (-.3934), which is in opposition to the positive relationship shown in
the regression equation for fuel rate as a single predictor. Because of the multicollinearity
between coal and fuel rate, these two independent variables interact in the regression
analysis in such a way as to produce regression coefficient estimates that are difficult to
interpret. Extreme caution should be exercised before interpreting these regression coef-
ficient estimates.

The problem of multicollinearity can also affect the t values that are used to evaluate
the regression coefficients. Because the problems of multicollinearity among predictors can
result in an overestimation of the standard deviation of the regression coefficients, the t
values tend to be underrepresentative when multicollinearity is present. In some regression
models containing multicollinearity in which all t values are nonsignificant, the overall F
value for the model is highly significant. In Section 14.1, an example was given of how
including interaction when it is significant strengthens a regression model. The computer
output for the regression models both with and without the interaction term was shown in
Figure 14.5. The model without interaction produced a statistically significant F value but
neither predictor variable was significant. Further investigation of this model reveals that
the correlation between the two predictors, x1 and x2, is .945. This extremely high correla-
tion indicates a strong collinearity between the two predictor variables.

This collinearity may explain the fact that the overall model is significant but neither
predictor is significant. It also underscores one of the problems with multicollinearity:
underrepresented t values. The t values test the strength of the predictor given the other
variables in the model. If a predictor is highly correlated with other independent variables,
it will appear not to add much to the explanation of y and produce a low t value. However,
had the predictor not been in the presence of these other correlated variables, the predic-
tor might have explained a high proportion of variation of y.

Many of the problems created by multicollinearity are interpretation problems. The
business researcher should be alert to and aware of multicollinearity potential with the pre-
dictors in the model and view the model outcome in light of such potential.

The problem of multicollinearity is not a simple one to overcome. However, several
methods offer an approach to the problem. One way is to examine a correlation matrix
like the one in Table 14.15 to search for possible intercorrelations among potential pre-
dictor variables. If several variables are highly correlated, the researcher can select the
variable that is most correlated to the dependent variable and use that variable to repre-
sent the others in the analysis. One problem with this idea is that correlations can be
more complex than simple correlation among variables. In other words, simple correla-
tion values do not always reveal multiple correlation between variables. In some
instances, variables may not appear to be correlated as pairs, but one variable is a linear
combination of several other variables. This situation is also an example of multi-
collinearity, and a cursory observation of the correlation matrix will probably not reveal
the problem.

Stepwise regression is another way to prevent the problem of multicollinearity. The
search process enters the variables one at a time and compares the new variable to those in
solution. If a new variable is entered and the t values on old variables become nonsignifi-
cant, the old variables are dropped out of solution. In this manner, it is more difficult for
the problem of multicollinearity to affect the regression analysis. Of course, because of
multicollinearity, some important predictors may not enter in to the analysis.

Other techniques are available to attempt to control for the problem of multi-
collinearity. One is called a variance inflation factor, in which a regression analysis is con-
ducted to predict an independent variable by the other independent variables. In this case,
the independent variable being predicted becomes the dependent variable. As this process
is done for each of the independent variables, it is possible to determine whether any of
the independent variables are a function of the other independent variables, yielding

yN = 45.806 + .0227(coal) - .3934(fuel rate)
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evidence of multicollinearity. By using the results from such a model, a variance inflation
factor (VIF) can be computed to determine whether the standard errors of the estimates
are inflated:

where R2
i is the coefficient of determination for any of the models, used to predict an inde-

pendent variable by the other k – 1 independent variables. Some researchers follow a guide-
line that any variance inflation factor greater than 10 or R2

i value more than .90 for the
largest variance inflation factors indicates a severe multicollinearity problem.**

VIF =
1

1 - R2
i

**William Mendenhall and Terry Sincich, A Second Course in Business Statistics: Regression Analysis. San Francisco:
Dellen Publishing Company, 1989; John Neter, William Wasserman, and Michael H. Kutner, Applied Linear
Regression Models, 2nd ed. Homewood, IL: Richard D. Irwin, 1989.

14.4 PROBLEMS 14.19 Develop a correlation matrix for the independent variables in Problem 14.13. Study
the matrix and make a judgment as to whether substantial multicollinearity is present
among the predictors. Why or why not?

14.20 Construct a correlation matrix for the four independent variables for Problem
14.14 and search for possible multicollinearity. What did you find and why?

14.21 In Problem 14.17, you were asked to use stepwise regression to predict premiums
earned by net income, dividends, and underwriting gain or loss. Study the stepwise
results, including the regression coefficients, to determine whether there may be a
problem with multicollinearity. Construct a correlation matrix of the three variables
to aid you in this task.

14.22 Study the three predictor variables in Problem 14.18 and attempt to determine
whether substantial multicollinearity is present between the predictor variables. If
there is a problem of multicollinearity, how might it affect the outcome of the 
multiple regression analysis?

One statistical tool that can be used
to study CEO compensation is mul-
tiple regression analysis. Regression

models can be developed using predictor variables, such as age,
years of experience, worth of company, or others, for analyzing
CEO compensation. Search procedures such as stepwise regres-
sion can be used to sort out the more significant predictors of
CEO compensation.

The researcher prepares for the multiple regression analy-
sis by conducting a study of CEOs and gathering data on sev-
eral variables. The data presented in the Decision Dilemma
could be used for such an analysis. It seems reasonable to

believe that CEO compensation is related to the size and worth
of a company, therefore it makes sense to attempt to develop a
regression model or models to predict CEO compensation by
the variables company sales, number of employees in the com-
pany, and the capital investment of a company. Qualitative or
dummy variables can also be used in such an analysis. In the
database given in the Decision Dilemma, one variable indicates
whether a company is a manufacturing company. One way to
recode this variable for regression analysis is to assign a 1 to
companies that are manufacturers and a 0 to others.

A stepwise regression procedure can sort out the variables
that seem to be more important predictors of CEO compen-
sation. A stepwise regression analysis was conducted on the
Decision Dilemma database using sales, number of employ-
ees, capital investment, and whether a company is in manu-
facturing as the four independent variables. The result of this
analysis follows.

Determining Compensation for CEOs
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Stepwise Regression: Cash Compen versus Sales, 
No. of Emp.,...
Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15
Response is Cash Com on 4 predictors, with N = 20
Step 1 2 3 4
Constant 243.9 232.2 223.8 223.3
No. of E 0.0696 0.1552 0.0498
T-Value 13.67 4.97 0.98
P-Value 0.000 0.000 0.343
Cap. Inv -1.66 -2.92 -3.06
T-Value -2.77 -3.97 -4.27
P-Value 0.013 0.001 0.001
Sales 1.08 1.45
T-Value 2.46 6.10
P-Value 0.026 0.000
S 32.6 27.9 24.5 24.5
R-Sq 91.22 93.95 95.61 95.34
R-Sq(adj) 90.73 93.24 94.78 94.80

The stepwise regression analysis produces a single predic-
tor model at step 1 with a high R2 value of .9122. The number
of employees variable used in a simple regression model
accounts for over 91.2% of the variation of CEO compensa-
tion data. An examination of the regression coefficient of
number of employees at the first step (.0696) indicates that a
one-employee increase results in a predicted increase of
(.0696 $1,000) about $70 in the CEO’s compensation.

At step 2, the company’s capital investment enters the
model. Notice that the R2 increases only by .0273 and that the
regression coefficient on capital investment is negative. This
result seems counterintuitive because we would expect that
the more capital investment a company has, the more the
CEO should be compensated for the responsibility. A Minitab
simple regression analysis using only capital investment pro-
duces the following model:

The regression equation is 
CashCompen = 257 + 1.29 CapInv

Notice that the regression coefficient in this model is pos-
itive as we would suppose. Multicollinearity is likely. In fact,
multicollinearity is evident among sales, number of employees,
and capital investment. Each is a function or determiner of
company size. Examine the following correlation coefficient:

Correlations

Sales No. Employees

No. Employees 0.997 1

Cap. Invest 0.995 .999

Notice that these three predictors are highly interrelated.
Therefore, the interpretation of the regression coefficients and
the order of entry of these variables in the stepwise regression
become more difficult. Nevertheless, number of employees is
most highly related to CEO compensation in these data.
Observe also in the stepwise regression output that number of
employees actually drops out of the model at step 4. The t ratio
for number of employees is not significant (t = 0.98) at step 3.
However, the R2 actually drops slightly when number of em-
ployees are removed. In searching for a model that is both

#

parsimonious and explanatory, the researcher could do worse
than to merely select the model at step 1.

Researchers might want to explore more complicated
nonlinear models. Some of the independent variables might
be related to CEO compensation but in some nonlinear
manner.

A brief study of the predictor variables in the Decision
Dilemma database reveals that as compensation increases,
the values of the data in the independent variables do not
increase at a linear rate. Scatter plots of sales, number of
employees, and capital investment with CEO compensation
confirm this suspicion. Shown here is a scatter plot of sales
with cash compensation.
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Observe that the graph suggests more of a logarithmic fit
than a linear one. We can use recoding techniques presented
in the chapter to conduct a multiple regression analysis to pre-
dict compensation using the log of each of these variables. In
the analysis, the compensation figures remain the same, but
each of the three quantitative independent variables are
recoded by taking the log of each value and entering the
resultant variable in the model. A second stepwise regression
analysis is under- taken with the log variables in the mix along
with the original variables. The results follow:

-Sq
-Sq(adj)

Alpha-to-Enter: 0.1 Alpha-to-Remove: 0.1
Response is Cash Com on 7 predictors, with  = 20
Step
Constant
Log sale
-Value
-Value
NO. Emp
-Value
-Value
Log cap
-Value
-Value
Sales
-Value
-Value
Cap. Inv
-Value
-Value

20.7
96.48
96.29

1
−129.61
224.3
22.22
0.000

14.3
98.41
98.22

2
−13.23
152.2
8.75

0.000
0.0251

4.53
0.000

8.59
99.46
99.36

3
−122.53
281.4
11.08
0.000
0.0233

6.97
0.000

−106.4
−5.58
0.000

3.07
99.94
99.92

4
−147.22
307.8
32.75
0.000
0.0903
13.94
0.000

−126.0
−17.87
0.000

−0.434
−10.52
0.000

2.32
99.97
99.95

5
−120.74
280.8
26.81
0.000

0.0828
15.52
0.000

−109.8
−15.56
0.000

−0.250
−4.11
0.001
−0.37
−3.51
0.003

Stepwise Regression: Cash Compen versus Sales, 
No. of Emp., ... 
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Note that in this stepwise regression analysis, the variable
log sales has the highest single predictability of compensation
producing an R2 of .9648, which is higher than the value at
step 1 in the first stepwise regression analysis. Number of
employees enters at step 2 and log of capital investment at
step 3. However, such a high R2 at step 1 leaves little room for
improved predictability. Our search through the variables may
well end with the decision to use the log of sales as the effi-
cient, predictable model of compensation. The final model
might be:

Human resource managers sometimes use compensation
tables to assist them in determining ranges and ballparks for
salary offers. Company boards of directors can use such mod-

els as the one developed here to assist them in negotiations
with possible candidates for CEO positions or to aid them in
determining whether a presently employed CEO is over- or
undercompensated. In addition, candidates who are searching
for new CEO opportunities can use models like these to deter-
mine the potential compensation for a new position and to
help them be more adequately prepared for salary negotia-
tions should they be offered a CEO position.

Some of the variables in this study will undoubtedly pro-
duce redundant information. The use of a correlation matrix
and a stepwise regression process can protect the analysis from
some of the problems of multicollinearity. The use of multi-
ple regression analysis on a large sample of CEO compensa-
tion data with many independent variables could provide
some interesting and exciting results.

CEO Compensation = -129.61 + 224.3 Log sales

Some business researchers misuse the results of search
procedures by using the order in which variables come into
a model (on stepwise and forward selection) to rank the
variables in importance. They state that the variable
entered at step 1 is the most important predictor of y, the
variable entering at step 2 is second most important, and so
on. In actuality, variables entering the analysis after step 1
are being analyzed by how much of the unaccounted-for
variation (residual variation) they are explaining, not how
much they are related to y by themselves. A variable that
comes into the model at the fourth step is the variable that
most greatly accounts for the variation of the y values left-
over after the first three variables have explained the rest.
However, the fourth variable taken by itself might explain

more variation of y than the second or third variable when
seen as single predictors.

Some people use the estimates of the regression coeffi-
cients to compare the worth of the predictor variables;
the larger the coefficient is, the greater its worth. At least
two problems plague this approach. The first is that most
variables are measured in different units. Thus, regression
coefficient weights are partly a function of the unit of
measurement of the variable. Second, if multicollinearity is
present, the interpretation of the regression coefficients is
questionable. In addition, the presence of multicollinearity
raises several issues about the interpretation of other
regression output. Researchers who ignore this problem
are at risk of presenting spurious results.

ETHICAL CONSIDERATIONS

SUMMARY

Multiple regression analysis can handle nonlinear independ-
ent variables. One way to accommodate this issue is to recode
the data and enter the variables into the analysis in the normal
way. Other nonlinear regression models, such as exponential
models, require that the entire model be transformed. Often
the transformation involves the use of logarithms. In some
cases, the resulting value of the regression model is in loga-
rithmic form and the antilogarithm of the answer must be
taken to determine the predicted value of y.

Indicator, or dummy, variables are qualitative variables
used to represent categorical data in the multiple regression
model. These variables are coded as 0, 1 and are often used 
to represent nominal or ordinal classification data that the
researcher wants to include in the regression analysis. If a
qualitative variable contains more than two categories, it gen-
erates multiple dummy variables. In general, if a qualitative
variable contains c categories, c - 1 dummy variables should
be created.

Search procedures are used to help sort through the inde-
pendent variables as predictors in the examination of various
possible models. Several search procedures are available,
including all possible regressions, stepwise regression, forward
selection, and backward elimination. The all possible regres-
sions procedure computes every possible regression model for
a set of data. The drawbacks of this procedure include the
time and energy required to compute all possible regressions
and the difficulty of deciding which models are most appro-
priate. The stepwise regression procedure involves selecting
and adding one independent variable at a time to the regres-
sion process after beginning with a one-predictor model.
Variables are added to the model at each step if they contain
the most significant t value associated with the remaining
variables. If no additional t value is statistically significant at
any given step, the procedure stops. With stepwise regression,
at each step the process examines the variables already in the
model to determine whether their t values are still significant.
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If not, they are dropped from the model, and the process
searches for other independent variables with large, signifi-
cant t values to replace the variable(s) dropped. The forward
selection procedure is the same as stepwise regression but does
not drop variables out of the model once they have been
included. The backward elimination procedure begins with a
“full” model, a model that contains all the independent vari-
ables. The sample size must be large enough to justify a full
model, which can be a limiting factor. Backward elimination
drops out the least important predictors one at a time until
only significant predictors are left in the regression model.
The variable with the smallest absolute t value of the statisti-

cally nonsignificant t values is the independent variable that is
dropped out of the model at each step.

One of the problems in using multiple regression is multi-
collinearity, or correlations among the predictor variables.
This problem can cause overinflated estimates of the standard
deviations of regression coefficients, misinterpretation of
regression coefficients, undersized t values, and misleading
signs on the regression coefficients. It can be lessened by using
an intercorrelation matrix of independent variables to help
recognize bivariate correlation, by using stepwise regression to
sort the variables one at a time, or by using statistics such as a
variance inflation factor.

KEY TERMS

dummy variable
forward selection
indicator variable
multicollinearity
quadratic model
qualitative variable

search procedures
stepwise regression
Tukey’s four-quadrant

approach

Tukey’s ladder of
transformations

variance inflation 
factor

all possible regressions
backward elimination

FORMULAS

Variance inflation factor

VIF =
1

1 - R2
i

SUPPLEMENTARY PROBLEMS

CALCULATING THE STATISTICS

14.23 Given here are the data for a dependent variable, y, and
independent variables. Use these data to develop a
regression model to predict y. Discuss the output.
Which variable is an indicator variable? Was it a signif-
icant predictor of y?

x1 x2 x3 y

0 51 16.4 14

0 48 17.1 17

1 29 18.2 29

0 36 17.9 32

0 40 16.5 54

1 27 17.1 86

1 14 17.8 117

0 17 18.2 120

1 16 16.9 194

1 9 18.0 203

1 14 18.9 217

0 11 18.5 235

14.24 Use the following data and a stepwise regression analy-
sis to predict y. In addition to the two independent
variables given here, include three other predictors in

your analysis: the square of each x as a predictor and an
interaction predictor. Discuss the results of the process.

x1 x2 y x1 x2 y

10 3 2002 5 12 1750

5 14 1747 6 8 1832

8 4 1980 5 18 1795

7 4 1902 7 4 1917

6 7 1842 8 5 1943

7 6 1883 6 9 1830

4 21 1697 5 12 1786

11 4 2021

14.25 Use the x1 values and the log of the x1 values given here
to predict the y values by using a stepwise regression
procedure. Discuss the output. Were either or both of
the predictors significant?

y x1 y x1

20.4 850 13.2 204

11.6 146 17.5 487

17.8 521 12.4 192

15.3 304 10.6 98

22.4 1029 19.8 703

21.9 910 17.4 394

16.4 242 19.4 647
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TESTING YOUR UNDERSTANDING

14.26 The U.S. Commodities Futures Trading Commission
reports on the volume of trading in the U.S. commodity
futures exchanges. Shown here are the figures for grain,
oilseeds, and livestock products over a period of several
years. Use these data to develop a multiple regression
model to predict grain futures volume of trading from
oilseeds volume and livestock products volume. All fig-
ures are given in units of millions. Graph each of these
predictors separately with the response variable and
use Tukey’s four-quadrant approach to explore possible
recoding schemes for nonlinear relationships. Include any
of these in the regression model. Comment on the results.

Grain Oilseeds Livestock

2.2 3.7 3.4

18.3 15.7 11.8

19.8 20.3 9.8

14.9 15.8 11.0

17.8 19.8 11.1

15.9 23.5 8.4

10.7 14.9 7.9

10.3 13.8 8.6

10.9 14.2 8.8

15.9 22.5 9.6

15.9 21.1 8.2

14.27 The U.S. Bureau of Mines produces data on the price of
minerals. Shown here are the average prices per year for
several minerals over a decade. Use these data and a
stepwise regression procedure to produce a model to
predict the average price of gold from the other vari-
ables. Comment on the results of the process.

Gold Copper Silver Aluminum 
($ per oz.) (cents per lb.) ($ per oz.) (cents per lb.)

161.1 64.2 4.4 39.8

308.0 93.3 11.1 61.0

613.0 101.3 20.6 71.6

460.0 84.2 10.5 76.0

376.0 72.8 8.0 76.0

424.0 76.5 11.4 77.8

361.0 66.8 8.1 81.0

318.0 67.0 6.1 81.0

368.0 66.1 5.5 81.0

448.0 82.5 7.0 72.3

438.0 120.5 6.5 110.1

382.6 130.9 5.5 87.8

14.28 The Shipbuilders Council of America in Washington,
D.C., publishes data about private shipyards. Among the
variables reported by this organization are the employ-
ment figures (per 1000), the number of naval vessels
under construction, and the number of repairs or con-
versions done to commercial ships (in $ millions).
Shown here are the data for these three variables over a
seven-year period. Use the data to develop a regression
model to predict private shipyard employment from

number of naval vessels under construction and repairs
or conversions of commercial ships. Graph each of these
predictors separately with the response variable and use
Tukey’s four-quadrant approach to explore possible re-
coding schemes for nonlinear relationships. Include any
of these in the regression model. Comment on the
regression model and its strengths and its weaknesses.

Commercial Ship 
Employment Naval Vessels Repairs or Conversions

133.4 108 431

177.3 99 1335

143.0 105 1419

142.0 111 1631

130.3 100 852

120.6 85 847

120.4 79 806

14.29 The U.S. Bureau of Labor Statistics produces consumer
price indexes for several different categories. Shown
here are the percentage changes in consumer price
indexes over a period of 20 years for food, shelter,
apparel, and fuel oil. Also displayed are the percentage
changes in consumer price indexes for all commodities.
Use these data and a stepwise regression procedure to
develop a model that attempts to predict all commodi-
ties by the other four variables. Construct scatter plots
of each of these variables with all commodities.
Examine the graphs in light of Tukey’s four-quadrant
approach. Develop any other appropriate predictor
variables by recoding data and include them in the
analysis. Comment on the result of this analysis.

All Fuel
Commodities Food Shelter Apparel Oil

.9 1.0 2.0 1.6 3.7

.6 1.3 .8 .9 2.7

.9 .7 1.6 .4 2.6

.9 1.6 1.2 1.3 2.6

1.2 1.3 1.5 .9 2.1

1.1 2.2 1.9 1.1 2.4

2.6 5.0 3.0 2.5 4.4

1.9 .9 3.6 4.1 7.2

3.5 3.5 4.5 5.3 6.0

4.7 5.1 8.3 5.8 6.7

4.5 5.7 8.9 4.2 6.6

3.6 3.1 4.2 3.2 6.2

3.0 4.2 4.6 2.0 3.3

7.4 14.5 4.7 3.7 4.0

11.9 14.3 9.6 7.4 9.3

8.8 8.5 9.9 4.5 12.0

4.3 3.0 5.5 3.7 9.5

5.8 6.3 6.6 4.5 9.6

7.2 9.9 10.2 3.6 8.4

11.3 11.0 13.9 4.3 9.2

14.30 The U.S. Department of Agriculture publishes data
annually on various selected farm products. Shown
here are the unit production figures for three farm



products for 10 years during a 20-year period. Use these
data and a stepwise regression analysis to predict corn
production by the production of soybeans and wheat.
Comment on the results.

Corn Soybeans Wheat 
(million bushels) (million bushels) (million bushels)

4152 1127 1352

6639 1798 2381

4175 1636 2420

7672 1861 2595

8876 2099 2424

8226 1940 2091

7131 1938 2108

4929 1549 1812

7525 1924 2037

7933 1922 2739

14.31 The American Chamber of Commerce Researchers
Association compiles cost-of-living indexes for selected
metropolitan areas. Shown here are cost-of-living
indexes for 25 different cities on five different items for
a recent year. Use the data to develop a regression
model to predict the grocery cost-of-living index by the
indexes of housing, utilities, transportation, and
healthcare. Discuss the results, highlighting both the
significant and nonsignificant predictors.

Grocery Transpor-
City Items Housing Utilities tation Healthcare

Albany 108.3 106.8 127.4 89.1 107.5

Albuquerque 96.3 105.2 98.8 100.9 102.1

Augusta, GA 96.2 88.8 115.6 102.3 94.0

Austin 98.0 83.9 87.7 97.4 94.9

Baltimore 106.0 114.1 108.1 112.8 111.5

Buffalo 103.1 117.3 127.6 107.8 100.8

Colorado 94.5 88.5 74.6 93.3 102.4

Springs

Dallas 105.4 98.9 108.9 110.0 106.8

Denver 91.5 108.3 97.2 105.9 114.3

Des Moines 94.3 95.1 111.4 105.7 96.2

El Paso 102.9 94.6 90.9 104.2 91.4

Indianapolis 96.0 99.7 92.1 102.7 97.4

Jacksonville 96.1 90.4 96.0 106.0 96.1

Kansas City 89.8 92.4 96.3 95.6 93.6

Knoxville 93.2 88.0 91.7 91.6 82.3

Los Angeles 103.3 211.3 75.6 102.1 128.5

Louisville 94.6 91.0 79.4 102.4 88.4

Memphis 99.1 86.2 91.1 101.1 85.5

Miami 100.3 123.0 125.6 104.3 137.8

Minneapolis 92.8 112.3 105.2 106.0 107.5

Mobile 99.9 81.1 104.9 102.8 92.2

Nashville 95.8 107.7 91.6 98.1 90.9

New Orleans 104.0 83.4 122.2 98.2 87.0

Oklahoma 98.2 79.4 103.4 97.3 97.1

City

Phoenix 95.7 98.7 96.3 104.6 115.2

INTERPRETING THE OUTPUT

14.32 A stepwise regression procedure was used to analyze a
set of 20 observations taken on four predictor variables
to predict a dependent variable. The results of this pro-
cedure are given next. Discuss the results.

STEPWISE REGRESSION OF Y ON 4 PREDIcTORS,
WITH N = 20
STEP 1 2
CONSTANT 152.2 124.5
X1 -50.6 -43.4
T-RATIO 7.42 6.13
X2 1.36
T-RATIO 2.13
S 15.2 13.9
R-SQ 75.39 80.59

14.33 Shown here are the data for y and three predictors, x1,
x2, and x3. A stepwise regression procedure has been
done on these data; the results are also given. Comment
on the outcome of the stepwise analysis in light of the
data.

y x1 x2 x3

94 21 1 204

97 25 0 198

93 22 1 184

95 27 0 200

90 29 1 182

91 20 1 159

91 18 1 147

94 25 0 196

98 26 0 228

99 24 0 242

90 28 1 162

92 23 1 180

96 25 0 219

Step 1 2 3
Constant    74.81   82.18    87.89

X3 0.099 0.067  0.071
T-Value    6.90   3.65     5.22
P-Value   0.000  0.004   0.001
X2 -2.26 -2.71
T-Value -2.32 -3.71
P-Value 0.043 0.005
X1 -0.256

80.3-Value-T
0.013Value-P

S 1.37 1.16  0.850
R-Sq 81.24 87.82  94.07
R-Sq(adj) 79.53  85.38    92.09
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14.34 Shown below is output from two Excel regression
analyses on the same problem. The first output was
done on a “full” model. In the second output, the vari-
able with the smallest absolute t value has been

removed, and the regression has been rerun like a sec-
ond step of a backward elimination process. Examine
the two outputs. Explain what happened, what the
results mean, and what might happen in a third step.

FULL MODEL

Regression Statistics

Multiple R 0.567
R Square 0.321
Adjusted R Square 0.208
Standard Error 159.681
Observations 29

ANOVA

SS MS
Significance

F

Regression 72464.02 0.046

F

2.84
Residual 25498.13
Total

df

4
24
28

289856.08
611955.23
901811.31

Coefficients Standard Error t Stat P-value

Intercept 2.71 0.012
X1
X2
X3
X4

336.79
1.65 

−5.63 
0.26 

185.50

124.0800
1.7800 

13.4700 
1.6800 

66.2200

0.93 
−0.42 
0.16 
2.80

0.363 
0.680 
0.878 
0.010

SECOND MODEL

Regression Statistics

Multiple R 0.566
R Square 0.321
Adjusted R Square 0.239
Standard Error 156.534
Observations 29

ANOVA

SS MS
Significance

F

Regression 96412.70 0.020

F

3.93
Residual 24502.90
Total

df

3
25
28

289238.1
612573.20

901811.3

Coefficients Standard Error t Stat P-value

Intercept
X1
X2
X4

342.92
1.83 

−5.75 
181.22

11.34
1.31 

13.18 
59.05

2.97
1.40 

−0.44 
3.07

0.006
0.174 
0.667 
0.005

ANALYZING THE DATABASES

1. Use the Manufacturing database to develop a multiple
regression model to predict Cost of Materials by Number
of Employees, New Capital Expenditures, Value Added by
Manufacture, Value of Industry Shipments, and End-of-
Year Inventories. Create indicator variables for values of

industry shipments that have been coded from 1 to 4. Use
a stepwise regression procedure. Does multicollinearity
appear to be a problem in this analysis? Discuss the results
of the analysis.

see www.wiley.com/college/black and WileyPLUS
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2. Construct a correlation matrix for the Hospital database
variables. Are some of the variables highly correlated?
Which ones and why? Perform a stepwise multiple regres-
sion analysis to predict Personnel by Control, Service,
Beds, Admissions, Census, Outpatients, and Births. The
variables Control and Service will need to be coded as indi-
cator variables. Control has four subcategories, and Service
has two.

3. Develop a regression model using the Financial database.
Use Total Revenues, Total Assets, Return on Equity,
Earnings per Share, Average Yield, and Dividends per
Share to predict the average P/E ratio for a company.

How strong is the model? Use stepwise regression to help
sort out the variables. Several of these variables may be
measuring similar things. Construct a correlation matrix
to explore the possibility of multicollinearity among the
predictors.

4. Using the International Stock Market database, conduct a
stepwise a multiple regression procedure to predict the
DJIA by the Nasdaq, the S&P 500, the Nikkei, the Hang
Seng, the FTSE 100, and the IPC. Discuss the outcome of
the analysis including the model, the strength of the model,
and the predictors.

CASE

Virginia Semiconductor is a leading manufacturer of prime
silicon substrates. The company, situated in Fredericksburg,
Virginia, was founded in 1978 by Dr. Thomas G. Digges and
his brother, Robert. Virginia Semiconductor (VSI) was
growing and prospering in the early 1980s by selling a high
volume of low-profit-margin wafers in the microelectronic
industry. However, in 1985, without notice, VSI lost two
major customers that represented 65% of its business. Left
with only 35% of its sales base, the company desperately
needed customers.

Dr. Digges, CEO of VSI, decided to seek markets where his
company’s market share would be small but profit margin
would be high because of the value of its engineering research
and its expertise. This decision turned out to be a wise direc-
tion for the small, versatile company. VSI developed a silicon
wafer that was two inches in diameter, 75 microns thick, and
polished on both sides. Such wafers were needed by several
customers but had never been produced before. The company
produced a number of these wafers and sold them for more
than 10 times the price of conventional wafers.

Soon the company was making wafers from 2 to 4 microns
thick (extremely thin), wafers with textured surfaces for
infrared applications, and wafers with micromachined holes
or shapes and selling them in specialized markets. It was able
to deliver these products faster than competitors were able to
deliver standard wafers.

Having made inroads at replacing lost sales, Virginia
Semiconductor still had to streamline operations and control
inventory and expenses. No layoffs occurred, but the average
work-week dropped to 32 hours and the president took an
80% pay reduction for a time. Expenses were cut as far as
seemed possible. The company had virtually no long-term
debt and fortunately was able to make it through this period
without incurring any additional significant debt. The
absence of large monthly debt payments enabled the company
to respond quickly to new production needs.

Virginia Semiconductor improved production quality by
cross-training employees. In addition, the company partici-
pated in the state of Virginia’s economic development efforts
to find markets in Europe, Japan, Korea, and Israel. Exports,
which were only 1% of the company’s business in 1985, grew
to over 40%.

The company continues to find new customers because
of product development. VSI has distributors of their prod-
ucts in 29 different countries. Underscoring a core value of
VSI, it is stated on the company’s Web page: “As always, VSI
can actually make any silicon wafer to any specification and
continues to supply small, complicated orders to valued
customers.”

Discussion

1. It is often useful to decision makers at a company to
determine what factors enter into the size of a cus-
tomer’s purchase. Suppose decision makers at Virginia
Semiconductor want to determine from past data what
variables might be predictors of size of purchase and are
able to gather some data on various customer compa-
nies. Assume the following data represent information
gathered for 16 companies on five variables: the total
amount of purchases made during a one-year period
(size of purchase), the size of the purchasing company
(in total sales volume), the percentage of all purchases
made by the customer company that were imports, the
distance of the customer company from Virginia
Semiconductor, and whether the customer company
had a single central purchasing agent. Use these data to
generate a multiple regression model to predict size of
purchase by the other variables. Summarize your find-
ings in terms of the strength of the model, significant
predictor variables, and any new variables generated by
recoding.

VIRGINIA SEMICONDUCTOR
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Size of Company Percent of Distance 
Purchase Size ($ million Customer from Virginia Central 
($1,000) sales) Imports Semiconductor Purchaser?

27.9 25.6 41 18 1

89.6 109.8 16 75 0

12.8 39.4 29 14 0

34.9 16.7 31 117 0

408.6 278.4 14 209 1

173.5 98.4 8 114 1

105.2 101.6 20 75 0

510.6 139.3 17 50 1

382.7 207.4 53 35 1

84.6 26.8 27 15 1

101.4 13.9 31 19 0

27.6 6.8 22 7 0

234.8 84.7 5 89 1

464.3 180.3 27 306 1

309.8 132.6 18 73 1

294.6 118.9 16 11 1

2. Suppose that the next set of data is Virginia
Semiconductor’s sales figures for the past 11 years, along
with the average number of hours worked per week by a
full-time employee and the number of different cus-
tomers the company has for its unique wafers. How do the
average workweek length and number of customers relate
to total sales figures? Use scatter plots to examine possible
relationships between sales and hours per week and sales
and number of customers. Use Tukey’s four-quadrant
approach for possible ways to recode the data. Use step-
wise regression analysis to explore the relationships. Let
the response variable be “sales” and the predictors be
“average number of hours worked per week,” “number of
customers,” and any new variables created by recoding.
Explore quadratic relationships, interaction, and other
relationships that seem appropriate by using stepwise
regression. Summarize your findings in terms of model
strength and significant predictors.

Average Sales Hours Worked Number of
($ million) per Week Customers

15.6 44 54

15.7 43 52

15.4 41 55

14.3 41 55

11.8 40 39

9.7 40 28

9.6 40 37

10.2 38 58

11.3 38 67

14.3 32 186

14.8 37 226

3. As Virginia Semiconductor continues to grow and prosper,
the potential for slipping back into inefficient ways is always
present. Suppose that after a few years the company’s sales
begin to level off, but it continues hiring employees. Such
figures over a 10-year period of time may look like the data
given here. Graph these data, using sales as the response
variable and number of employees as the predictor. Study
the graph in light of Tukey’s four-quadrant approach. Using
the information learned, develop a regression model to pre-
dict sales by the number of employees. On the basis of what
you find, what would you recommend to management
about the trend if it were to continue? What do you see in
these data that would concern management?

Sales ($ million) Number of Employees

20.2 120

24.3 122

28.6 127

33.7 135

35.2 142

35.9 156

36.3 155

36.2 167

36.5 183

36.6 210

Source: Adapted from “Virginia Semiconductor: A New Beginning,”
RealWorld Lessons for America’s Small Businesses: Insights from the Blue Chip
Enterprise Initiative 1994. Published by Nation’s Business magazine on behalf
of Connecticut Mutual Life Insurance Company and the U.S. Chamber of
Commerce in association with the Blue Chip Enterprise Initiative, 1994.
Virginia Semiconductor’s Web site (2009) at: http://www.virginiasemi.com.

USING THE COMPUTER

EXCEL
■ Excel does not have Model Building-Search Procedure

capability. However, Excel can perform multiple regression
analysis. The commands are essentially the same as those

for simple regression except that the x range of data may
include several columns. Excel will determine the number
of predictor variables from the number of columns entered
in to Input X Range.
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■ Begin by selecting the Data tab on the Excel worksheet.
From the Analysis panel at the right top of the Data tab
worksheet, click on Data Analysis. If your Excel worksheet
does not show the Data Analysis option, then you can load
it as an add-in following directions given in Chapter 2.
From the Data Analysis pulldown menu, select
Regression. In the Regression dialog box, input the loca-
tion of the y values in Input Y Range. Input the location of
the x values in Input X Range. Input Labels and input
Confidence Level. To pass the line through the origin,
check Constant is Zero. To printout the raw residuals,
check Residuals. To printout residuals converted to z
scores, check Standardized Residuals. For a plot of the
residuals, check Residual Plots. For a plot of the line
through the points check Line Fit Plots.

■ Standard output includes R, R2, se , and an ANOVA table
with the F test, the slope and intercept, t statistics with
associated p-values, and any optionally requested output,
such as graphs or residuals.

MINITAB

■ Minitab does have Model Building–Search Procedure capa-
bility procedures including both forward and backward
Stepwise regression, Forward Selection, and Backward
Elimination.

■ To begin, select Stat from the menu bar. Select Regression
from the Stat pulldown menu. Select Stepwise from the
Regression pulldown menu. Place the column name or
column location of the y variable in Response. Place the
column name or column location of the x variable(s) in
Predictors. If you want to guarantee inclusion of particu-
lar variables in the model, place the column name or col-
umn locations of such variables in Predictors to include
in every model. This is optional. Select Methods for
Model Building options and selection of criterion for
adding or removing a variable.

■ In the Methods dialog box, Check Use alpha values to use
alpha as the criterion for adding or removing a variable.
Check Use F values to use F values as the criterion for
adding or removing a variable. Check Stepwise (forward
and backward) to run a standard forward or backward
stepwise regression procedure. To specify particular vari-
ables to be included in the initial model, place the column
name or column location of such variables in the box
labeled Predictors in initial model. Check Forward selection
to run a forward selection regression. Check Backward
elimination to run a backward elimination regression. In
each of these model-building procedures, you have the
option of setting particular values of alpha or F for the
entering and/or removing variables from the model.
Minitab defaults to an alpha of 0.15 and an F of 4.


