
C H A P T E R  1 5

Time-Series Forecasting 
and Index Numbers
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LEARNING OBJECTIVES
This chapter discusses the general use of forecasting in business, several tools that
are available for making business forecasts, the nature of time-series data, and the
role of index numbers in business, thereby enabling you to:

1. Differentiate among various measurements of forecasting error, including mean
absolute deviation and mean square error, in order to assess which forecasting
method to use

2. Describe smoothing techniques for forecasting models, including na



For the past two decades, there has
been a heightened awareness of and
increased concern over pollution in

various forms in
the United States.
One of the main
areas of environ-
mental concern is

air pollution, and the U.S. Environmental Protection Agency
(EPA) regularly monitors the quality of air around the country.
Some of the air pollutants monitored include carbon monoxide
emissions, nitrogen oxide emissions, volatile organic com-
pounds, sulfur dioxide emissions, particulate matter, fugitive
dust, and lead emissions. Shown below are emission data for two
of these air pollution variables, carbon monoxide and nitrogen
oxides, over a 19-year period reported by the EPA in millions
short-tons.

Year Carbon Monoxide Nitrogen Oxides

1985 176.84 25.76
1986 173.67 25.42
1987 172.97 25.58
1988 174.42 26.07
1989 160.52 25.38
1990 154.19 25.53
1991 147.13 25.18

Year Carbon Monoxide Nitrogen Oxides

1992 140.90 25.26
1993 135.90 25.36
1994 133.56 25.35
1995 126.78 24.96
1996 128.86 24.79
1997 117.91 24.71
1998 115.38 24.35
1999 114.54 22.84
2000 114.47 22.60
2001 106.30 21.55
2002 111.06 21.14
2003 106.24 20.33
2004 101.43 19.52
2005 96.62 18.71
2006 92.13 17.69
2007 88.25 17.03

Managerial and Statistical Questions

1. Is it possible to forecast the emissions of carbon mon-
oxide or nitrogen oxides for the year 2011, 2015, or even
2025 using these data?

2. What techniques best forecast the emissions of carbon
monoxide or nitrogen oxides for future years from these data?

Source: Adapted from statistics published as National Transportation Statistics by
the Bureau of Transportation Statistics (U.S. government) at: http://www.
bts.gov/publications/national_transportation_statistics/html/table_04_40.html;
http://www.bts.gov/publications/national_transportation_statistics/html/
table_04_41.html
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Forecasting Air Pollution

(continued)

Every day, forecasting—the art or science of predicting the future—is used in the decision-
making process to help business people reach conclusions about buying, selling, producing,
hiring, and many other actions. As an example, consider the following items:

■ Market watchers predict a resurgence of stock values next year.

■ City planners forecast a water crisis in Southern California.

■ Future brightens for solar power.

■ Energy secretary sees rising demand for oil.

■ CEO says difficult times won’t be ending soon for U.S. airline industry.

■ Life insurance outlook fades.

■ Increased competition from overseas businesses will result in significant layoffs in
the U.S. computer chip industry.

How are these and other conclusions reached? What forecasting techniques are used? Are
the forecasts accurate? In this chapter we discuss several forecasting techniques, how to meas-
ure the error of a forecast, and some of the problems that can occur in forecasting. In addition,
this chapter will focus only on data that occur over time, time-series data.

Time-series data are data gathered on a given characteristic over a period of time at
regular intervals. Time-series forecasting techniques attempt to account for changes over
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time by examining patterns, cycles, or trends, or using information about previous time
periods to predict the outcome for a future time period. Time-series methods include naïve
methods, averaging, smoothing, regression trend analysis, and the decomposition of the
possible time-series factors, all of which are discussed in subsequent sections.

Virtually all areas of business, including production, sales, employment, transportation, distri-
bution, and inventory, produce and maintain time-series data. Table 15.1 provides an example
of time-series data released by the Office of Market Finance, U.S. Department of the Treasury.
The table contains the bond yield rates of three-month Treasury Bills for a 17-year period.

Why does the average yield differ from year to year? Is it possible to use these time series
data to predict average yields for year 18 or ensuing years? Figure 15.1 is a graph of these data
over time. Often graphical depiction of time-series data can give a clue about any trends,
cycles, or relationships that might exist there. Does the graph in Figure 15.1 show that bond
yields are decreasing? Will next year’s yield rate be lower or is a cycle occurring in these data
that will result in an increase? To answer such questions, it is sometimes helpful to determine
which of the four components of time-series data exist in the data being studied.

Time-Series Components

It is generally believed that time-series data are composed of four elements: trend, cyclicality, sea-
sonality, and irregularity. Not all time-series data have all these elements. Consider Figure 15.2,
which shows the effects of these time-series elements on data over a period of 13 years.

The long-term general direction of data is referred to as trend. Notice that even though
the data depicted in Figure 15.2 move through upward and downward periods, the general
direction or trend is increasing (denoted in Figure 15.2 by the line). Cycles are patterns of
highs and lows through which data move over time periods usually of more than a year. Notice
that the data in Figure 15.2 seemingly move through two periods or cycles of highs and lows
over a 13-year period. Time-series data that do not extend over a long period of time may not
have enough “history” to show cyclical effects. Seasonal effects, on the other hand, are shorter
cycles, which usually occur in time periods of less than one year. Often seasonal effects are meas-
ured by the month, but they may occur by quarter, or may be measured in as small a time
frame as a week or even a day. Note the seasonal effects shown in Figure 15.2 as up and down
cycles, many of which occur during a 1-year period. Irregular fluctuations are rapid changes
or “bleeps” in the data, which occur in even shorter time frames than seasonal effects. Irregular
fluctuations can happen as often as day to day. They are subject to momentary change and
are often unexplained. Note the irregular fluctuations in the data of Figure 15.2.

INTRODUCTION TO FORECASTING15.1 
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Year Average Yield 

1 14.03%

2 10.69

3 8.63

4 9.58

5 7.48

6 5.98

7 5.82

8 6.69

9 8.12

10 7.51

11 5.42

12 3.45

13 3.02

14 4.29

15 5.51

16 5.02

17 5.07

TABLE 15.1

Bond Yields of Three-Month
Treasury Bills
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Observe again the bond yield data depicted in Figure 15.1. The general trend seems to
move downward and contain two cycles. Each of the cycles traverses approximately 5 to
8 years. It is possible, although not displayed here, that seasonal periods of highs and lows
within each year result in seasonal bond yields. In addition, irregular daily fluctuations of
bond yield rates may occur but are unexplainable.

Time-series data that contain no trend, cyclical, or seasonal effects are said to be stationary.
Techniques used to forecast stationary data analyze only the irregular fluctuation effects.

The Measurement of Forecasting Error

In this chapter, several forecasting techniques will be introduced that typically produce dif-
ferent forecasts. How does a decision maker know which forecasting technique is doing the
best job in predicting the future? One way is to compare forecast values with actual values and
determine the amount of forecasting error a technique produces. An examination of indi-
vidual errors gives some insight into the accuracy of the forecasts. However, this process can
be tedious, especially for large data sets, and often a single measurement of overall forecast-
ing error is needed for the entire set of data under consideration. Any of several methods can
be used to compute error in forecasting. The choice depends on the forecaster’s objective, the
forecaster’s familiarity with the technique, and the method of error measurement used by the
computer forecasting software. Several techniques can be used to measure overall error,
including mean error (ME), mean absolute deviation (MAD), mean square error (MSE),
mean percentage error (MPE), and mean absolute percentage error (MAPE). Here we will
consider the mean absolute deviation (MAD) and the mean square error (MSE).

Error

The error of an individual forecast is the difference between the actual value and the forecast
of that value.

Year

1 2 3 4 5 6 7 8 9 10 11 12 13

Irregular
fluctuations

Seasonal

Trend
CyclicalTime-Series Effects

FIGURE 15.2

ERROR OF AN 
INDIVIDUAL FORECAST where

et = the error of the forecast
xt = the actual value
Ft = the forecast value

et = xt - Ft

Mean Absolute Deviation (MAD)

One measure of overall error in forecasting is the mean absolute deviation, MAD. The
mean absolute deviation (MAD) is the mean, or average, of the absolute values of the errors.
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Table 15.2 presents the nonfarm partnership tax returns in the United States over an
11-year period along with the forecast for each year and the error of the forecast. An exam-
ination of these data reveals that some of the forecast errors are positive and some are neg-
ative. In summing these errors in an attempt to compute an overall measure of error, the
negative and positive values offset each other resulting in an underestimation of the total
error. The mean absolute deviation overcomes this problem by taking the absolute value of
the error measurement, thereby analyzing the magnitude of the forecast errors without
regard to direction.

TABLE 15.2

Nonfarm Partnership 
Tax Returns

Year Actual Forecast Error

1 1,402 — —

2 1,458 1,402 56.0

3 1,553 1,441.2 111.8

4 1,613 1,519.5 93.5

5 1,676 1,585.0 91.0

6 1,755 1,648.7 106.3

7 1,807 1,723.1 83.9

8 1,824 1,781.8 42.2

9 1,826 1,811.3 14.7

10 1,780 1,821.6 -41.6

11 1,759 1,792.5 -33.5

MEAN ABSOLUTE
DEVIATION MAD =

© ƒ ei ƒ
Number of Forecasts

MEAN SQUARE ERROR
MSE =

©ei
2

Number of Forecasts

The mean absolute error can be computed for the forecast errors in Table 15.2 as follows.

Mean Square Error (MSE)

The mean square error (MSE) is another way to circumvent the problem of the canceling
effects of positive and negative forecast errors. The MSE is computed by squaring each error
(thus creating a positive number) and averaging the squared errors. The following formula
states it more formally.

MAD =
ƒ 56.0 ƒ + ƒ 111.8 ƒ + ƒ 93.5 ƒ + ƒ 91.0 ƒ + ƒ 106.3 ƒ + ƒ 83.9 ƒ + ƒ 42.2 ƒ + ƒ 14.7 ƒ + ƒ -41.6 ƒ + ƒ -33.5 ƒ

10
= 67.45

The mean square error can be computed for the errors shown in Table 15.2 as follows.

Selection of a particular mechanism for computing error is up to the forecaster. It is impor-
tant to understand that different error techniques will yield different information. The
business researcher should be informed enough about the various error measurement
techniques to make an educated evaluation of the forecasting results.

MSE =
(56.0)2 + (111.8)2 + (93.5)2 + (91.0)2 + (106.3)2 + (83.9)2 + (42.2)2 + (14.7)2 + (-41.6)2 + (-33.5)2

10
= 5,584.7



15.1 PROBLEMS 15.1 Use the forecast errors given here to compute MAD and MSE. Discuss the information
yielded by each type of error measurement.

Period e

1 2.3
2 1.6
3 -1.4
4 1.1
5 .3
6 -.9
7 -1.9
8 -2.1
9 .7

15.2 Determine the error for each of the following forecasts. Compute MAD and MSE.

Period Value Forecast Error

1 202 — —
2 191 202
3 173 192
4 169 181
5 171 174
6 175 172
7 182 174
8 196 179
9 204 189

10 219 198
11 227 211

15.3 Using the following data, determine the values of MAD and MSE. Which of these
measurements of error seems to yield the best information about the forecasts? Why?

Period Value Forecast

1 19.4 16.6
2 23.6 19.1
3 24.0 22.0
4 26.8 24.8
5 29.2 25.9
6 35.5 28.6

15.4 Figures for acres of tomatoes harvested in the United States from an 11-year period
follow. The data are published by the U.S. Department of Agriculture. With these
data, forecasts have been made by using techniques presented later in this chapter.
Compute MAD and MSE on these forecasts. Comment on the errors.

Year Number of Acres Forecast

1 140,000 —
2 141,730 140,000
3 134,590 141,038
4 131,710 137,169
5 131,910 133,894
6 134,250 132,704
7 135,220 133,632
8 131,020 134,585
9 120,640 132,446

10 115,190 125,362
11 114,510 119,259

Problems 593
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Several techniques are available to forecast time-series data that are stationary or that
include no significant trend, cyclical, or seasonal effects. These techniques are often referred
to as smoothing techniques because they produce forecasts based on “smoothing out” the
irregular fluctuation effects in the time-series data. Three general categories of smoothing
techniques are presented here: (1) naı̈ve forecasting models, (2) averaging models, and
(3) exponential smoothing.

Na



Averaging Models

Many naïve model forecasts are based on the value of one time period. Often such forecasts
become a function of irregular fluctuations of the data; as a result, the forecasts are “over-
steered.” Using averaging models, a forecaster enters information from several time periods
into the forecast and “smoothes” the data. Averaging models are computed by averaging
data from several time periods and using the average as the forecast for the next time period.

Simple Averages

The most elementary of the averaging models is the simple average model. With this
model, the forecast for time period t is the average of the values for a given number of previ-
ous time periods, as shown in the following equation.

The data in Table 15.4 provide the costs of residential heating oil in the United States
for 3 years. Figure 15.4 displays a Minitab graph of these data.

A simple 12-month average could be used to forecast the cost of residential heating oil
for September of year 3 from the data in Table 15.4 by averaging the values for September
of year 2 through August of year 3 (the preceding 12 months).

With this simple average, the forecast for year 3 September heating oil cost is 56.45
cents. Note that none of the previous 12-month figures equal this value and that this aver-
age is not necessarily more closely related to values early in the period than to those late in
the period. The use of the simple average over 12 months tends to smooth the variations,
or fluctuations, that occur during this time.

Moving Averages

Suppose we were to attempt to forecast the heating oil cost for October of year 3 by using
averages as the forecasting method. Would we still use the simple average for September of
year 2 through August of year 3 as we did to forecast for September of year 3? Instead of
using the same 12 months’ average used to forecast September of year 3, it would seem to

FSept, year 3 =
55.7 + 56.7 + 57.2 + 58.0 + 58.2 + 58.3 + 57.7 + 56.7 + 56.8 + 55.5 + 53.8 + 52.8

12
= 56.45

Ft =
Xt-1 + Xt- 2 + Xt-3 + Á + Xt-n
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Cost of
Time Frame Heating Oil

January (year 1) 66.1

February 66.1

March 66.4

April 64.3

May 63.2

June 61.6

July 59.3

August 58.1

September 58.9

October 60.9

November 60.7

December 59.4

January (year 2) 61.3

February 63.3

March 62.1

April 59.8

May 58.4

June 57.6

July 55.7

August 55.1

September 55.7

October 56.7

November 57.2

December 58.0

January (year 3) 58.2

February 58.3

March 57.7

April 56.7

May 56.8

June 55.5

July 53.8

August 52.8

TABLE 15.4

Cost of Residential Heating Oil
(cents per gallon)

15.2 Smoothing Techniques 595
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make sense to use the 12 months prior to October of year 3 (October of year 2 through
September of year 3) to average for the new forecast. Suppose in September of year 3 the
cost of heating oil is 53.3 cents. We could forecast October of year 3 with a new average that
includes the same months used to forecast September of year 3, but without the value for
September of year 2 and with the value of September of year 3 added.

Computing an average of the values from October of year 2 through September of year
3 produces a moving average, which can be used to forecast the cost of heating oil for
October of year 3. In computing this moving average, the earliest of the previous 12 values,
September of year 2, is dropped and the most recent value, September of year 3, is included.

A moving average is an average that is updated or recomputed for every new time period
being considered. The most recent information is utilized in each new moving average. This
advantage is offset by the disadvantages that (1) it is difficult to choose the optimal length
of time for which to compute the moving average, and (2) moving averages do not usually
adjust for such time-series effects as trend, cycles, or seasonality. To determine the more
optimal lengths for which to compute the moving averages, we would need to forecast with
several different average lengths and compare the errors produced by them.

FSept, year 3 =
56.7 + 57.2 + 58.0 + 58.2 + 58.3 + 57.7 + 56.7 + 56.8 + 55.5 + 53.8 + 52.8 + 53.3

12
= 56.25
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DEMONSTRATION
PROBLEM 15.1

Shown here are shipments (in millions of dollars) for electric lighting and wiring
equipment over a 12-month period. Use these data to compute a 4-month moving
average for all available months.

Month Shipments

January 1056
February 1345
March 1381
April 1191
May 1259
June 1361
July 1110
August 1334
September 1416
October 1282
November 1341
December 1382

Solution

The first moving average is

4-Month Moving Average =
1056 + 1345 + 1381 + 1191

4
= 1243.25



This first 4-month moving average can be used to forecast the shipments in May.
Because 1259 shipments were actually made in May, the error of the forecast is

Shown next, along with the monthly shipments, are the 4-month moving aver-
ages and the errors of forecast when using the 4-month moving averages to predict
the next month’s shipments. The first moving average is displayed beside the month
of May because it is computed by using January, February, March, and April and
because it is being used to forecast the shipments for May. The rest of the 4-month
moving averages and errors of forecast are as shown.

4-Month Moving Forecast

Month Shipments Average Error

January 1056 — —
February 1345 — —
March 1381 — —
April 1191 — —
May 1259 1243.25 15.75
June 1361 1294.00 67.00
July 1110 1298.00 -188.00
August 1334 1230.25 103.75
September 1416 1266.00 150.00
October 1282 1305.25 -23.25
November 1341 1285.50 55.50
December 1382 1343.25 38.75

The following Minitab graph shows the actual shipment values and the forecast
shipment values based on the 4-month moving averages. Notice that the moving
averages are “smoothed” in comparison with the individual data values.They appear
to be less volatile and seem to be attempting to follow the general trend of the data.

ErrorMay = 1259 - 1243.25 = 15.75

Actual
Predicted
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Weighted Moving Averages

A forecaster may want to place more weight on certain periods of time than on others. For
example, a forecaster might believe that the previous month’s value is three times as impor-
tant in forecasting as other months. A moving average in which some time periods are
weighted differently than others is called a weighted moving average.

As an example, suppose a 3-month weighted average is computed by weighting last
month’s value by 3, the value for the previous month by 2, and the value for the month
before that by 1. This weighted average is computed as

xweighted =
3(Mt-1) + 2(Mt- 2) + 1(Mt-3)

6

15.2 Smoothing Techniques 597
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where
Mt-1 = last month’s value
Mt-2 = value for the previous month
Mt-3 = value for the month before the previous month

Notice that the divisor is 6. With a weighted average, the divisor always equals the total
number of weights. In this example, the value of Mt-1 counts three times as much as the
value for Mt-3.

DEMONSTRATION
PROBLEM 15.2

Compute a 4-month weighted moving average for the electric lighting and wiring data
from Demonstration Problem 15.1, using weights of 4 for last month’s value, 2 for the
previous month’s value, and 1 for each of the values from the 2 months prior to that.

Solution

The first weighted average is

This moving average is recomputed for each ensuing month. Displayed next are
the monthly values, the weighted moving averages, and the forecast error for the data.

4-Month Weighted
Moving Average 

Month Shipments Forecast Error

January 1056 — —
February 1345 — —
March 1381 — —
April 1191 — —
May 1259 1240.9 18.1
June 1361 1268.0 93.0
July 1110 1316.8 -206.8
August 1334 1201.5 132.5
September 1416 1272.0 144.0
October 1282 1350.4 -68.4
November 1341 1300.5 40.5
December 1382 1334.8 47.2

Note that in this problem the errors obtained by using the 4-month weighted mov-
ing average were greater than most of the errors obtained by using an unweighted 
4-month moving average, as shown here.

Forecast Error, Forecast Error, 
Unweighted 4-Month Weighted 4-Month

Moving Average Moving Average

— —
— —
— —
— —
15.8 18.1
67.0 93.0

-188.0 -206.8
103.8 132.5
150.0 144.0
-23.3 -68.4

55.5 40.5
38.8 47.2

4(1191) + 2(1381) + 1(1345) + 1(1056)
8

= 1240.875



The value of a is determined by the forecaster. The essence of this procedure is that the
new forecast is a combination of the present forecast and the present actual value. If a is
chosen to be less than .5, less weight is placed on the actual value than on the forecast of
that value. If a is chosen to be greater than .5, more weight is being put on the actual value
than on the forecast value.

As an example, suppose the prime interest rate for a time period is 5% and the forecast
of the prime interest rate for this time period was 6%. If the forecast of the prime interest
rate for the next period is determined by exponential smoothing with a = .3, the forecast is

Notice that the forecast value of 5.7% for the next period is weighted more toward the
previous forecast of 6% than toward the actual value of 5% because a is .3. Suppose we use
a = .7 as the exponential smoothing constant. Then,

This value is closer to the actual value of 5% than the previous forecast of 6% because
the exponential smoothing constant, a, is greater than .5.

To see why this procedure is called exponential smoothing, examine the formula for
exponential smoothing again.

If exponential smoothing has been used over a period of time, the forecast for Ft will
have been obtained by

Substituting this forecast value, Ft, into the preceding equation for Ft +1 produces

but

Substituting this value of Ft -1 into the preceding equation for Ft +1 produces

 = a # Xt + a(1 - a) # Xt - 1 + a(1 - a)2 # Xt - 2 + (1 - a)3Ft - 2

 = a # Xt + a(1 - a) # Xt - 1 + (1 - a)2[a # Xt - 2 + (1 - a)Ft - 2]
 Ft + 1 = a # Xt + a(1 - a) # Xt - 1 + (1 - a)2Ft - 1

Ft - 1 = a # Xt - 2 + (1 - a)Ft - 2

 = a # Xt + a(1 - a) # Xt - 1 + (1 - a)2Ft - 1

 Ft + 1 = a # Xt + (1 - a)[a # Xt - 1 + (1 - a) # Ft - 1]

Ft = a # Xt - 1 + (1 - a) # Ft - 1

Ft + 1 = a # Xt + (1 - a) # Ft

Ft + 1 = (.7)(5%) + (1.0 - .7)(6%) = 5.3%

Ft + 1 = (.3)(5%) + (1.0 - .3)(6%) = 5.7%

EXPONENTIAL SMOOTHING

where
Ft +1 = the forecast for the next time period (t + 1)

Ft = the forecast for the present time period (t)
Xt = the actual value for the present time period
a = a value between 0 and 1 referred to as the exponential smoothing constant.

Ft + 1 = a # Xt + (1 - a) # Ft

Larger errors with weighted moving averages are not always the case. The fore-
caster can experiment with different weights in using the weighted moving average
as a technique. Many possible weighting schemes can be used.

Exponential Smoothing

Another forecasting technique, exponential smoothing, is used to weight data from previ-
ous time periods with exponentially decreasing importance in the forecast. Exponential
smoothing is accomplished by multiplying the actual value for the present time period, Xt,
by a value between 0 and 1 (the exponential smoothing constant) referred to as a (not the
same a used for a Type I error) and adding that result to the product of the present time
period’s forecast, Ft and (1 - a). The following is a more formalized version.

15.2 Smoothing Techniques 599
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Continuing this process shows that the weights on previous-period values and forecasts
include (1 - a)n (exponential values). The following chart shows the values of a, (1 - a),
(1 - a)2, and (1 - a)3 for three different values of a. Included is the value ofa(1 - a)3, which
is the weight of the actual value for three time periods back. Notice the rapidly decreasing
emphasis on values for earlier time periods. The impact of exponential smoothing on time-
series data is to place much more emphasis on recent time periods. The choice of a deter-
mines the amount of emphasis.

1 (1 )2 (1 )3 (1 )3

.2 .8 .64 .512 .1024

.5 .5 .25 .125 .0625

.8 .2 .04 .008 .0064

Some forecasters use the computer to analyze time-series data for various values of a.
By setting up criteria with which to judge the forecasting errors, forecasters can select the
value of a that best fits the data.

The exponential smoothing formula

can be rearranged algebraically as

This form of the equation shows that the new forecast, Ft+1, equals the old forecast, Ft ,
plus an adjustment based on a times the error of the old forecast (Xt - Ft). The smaller a is,
the less impact the error has on the new forecast and the more the new forecast is like the
old. It demonstrates the dampening effect of a on the forecasts.

Ft + 1 = Ft + a(Xt - Ft)

Ft +1 = a # Xt + (1 - a) # Ft

A�AA�A�A�A

DEMONSTRATION
PROBLEM 15.3

The U.S. Census Bureau reports the total units of new privately owned housing
started over a 16-year recent period in the United States are given here. Use expo-
nential smoothing to forecast the values for each ensuing time period. Work the prob-
lem using a = .2, .5, and .8.

Year Total Units (1000)

1 1193
2 1014
3 1200
4 1288
5 1457
6 1354
7 1477
8 1474
9 1617

10 1641
11 1569
12 1603
13 1705
14 1848
15 1956
16 2068



The following table provides the forecasts with each of the three values of alpha.
Note that because no forecast is given for the first time period, we cannot compute a
forecast based on exponential smoothing for the second period. Instead, we use the
actual value for the first period as the forecast for the second period to get started. As
examples, the forecasts for the third, fourth, and fifth periods are computed for
as follows.

Total
Year Units (1000) F e F e F e

1 1193 — — — — — —
2 1014 1193.0 -179.0 1193.0 -179.0 1193.0 -179.0
3 1200 1157.2 42.8 1103.5 96.5 1049.8 150.2
4 1288 1165.8 122.2 1151.8 136.2 1170.0 118.0
5 1457 1190.2 266.8 1219.9 237.1 1264.4 192.6
6 1354 1243.6 110.4 1338.4 15.6 1418.5 -64.5
7 1477 1265.7 211.3 1346.2 130.8 1366.9 110.1
8 1474 1307.9 166.1 1411.6 62.4 1455.0 19.0
9 1617 1341.1 275.9 1442.8 174.2 1470.2 146.8

10 1641 1396.3 244.7 1529.9 111.1 1587.6 53.4
11 1569 1445.2 123.8 1585.5 -16.5 1630.3 -61.3
12 1603 1470.0 133.0 1577.2 25.8 1581.3 21.7
13 1705 1496.6 208.4 1590.1 114.9 1598.7 106.3
14 1848 1538.3 309.7 1647.6 200.4 1683.7 164.3
15 1956 1600.2 355.8 1747.8 208.2 1815.1 140.9
16 2068 1671.4 396.6 1851.9 216.1 1927.8 140.2

.2 .5 .8

MAD: 209.8 128.3 111.2
MSE: 53,110.5 21,628.6 15,245.4

�A�A�A

A � .8A � .5A � .2

 F5 = .2(1288) + .8(1165.8) = 1190.2
 F4 = .2(1200) + .8(1157.2) = 1165.8
 F3 = .2(1014) + .8(1193) = 1157.2

A � .2

Solution

An Excel graph of these data is shown here.
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Which value of alpha works best on the data? At the bottom of the preceding
analysis are the values of two different measurements of error for each of the three
different values of alpha. With each measurement of error, = .8 produces the small-
est measurement of error. Observe from the Excel graph of the original data that the
data vary up and down considerably. In exponential smoothing, the value of alpha is
multiplied by the actual value and 1 - is multiplied by the forecast value to get the
next forecast. Because the actual values are varying considerably, the exponential
smoothing value with the largest alpha seems to be forecasting the best. By placing
the greatest weight on the actual values, the new forecast seems to predict the new
value better.

a

a

STATISTICS IN BUSINESS TODAY

Forecasting the Economy by Scrap Metal
Prices?
Economists are constantly on the lookout for valid indica-
tors of a country’s economy. Forecasters have sifted through
oil indicators, the price of gold on the world markets, the
Dow Jones averages, government-published indexes, and
practically anything else that might seem related in some
way to the state of the economy.

Would you believe that the price of scrap metal is a pop-
ular indicator of economic activity in the United States?
Several well-known and experienced economic forecasters,
including Federal Reserve chairman Alan Greenspan and
the chief market analyst for Chase Manhattan, Donald
Fine, believe that the price of scrap metal is a good indica-
tor of the industrial economy.

Scrap metal is leftover copper, steel, aluminum, and
other metals. Scrap metal is a good indicator of industrial
activity because as manufacturing increases, the demand
for scrap metals increases, as does the price of scrap metal.
Donald Fine says that “scrap metal is the beginning of the
production chain”; hence, an increasing demand for it is an
indicator of increasing manufacturing production. Mr.
Fine goes on to say that scrap metal is sometimes a better
indicator of the future direction of the economy than many
governmental statistics. In some cases, scrap metal cor-
rectly predicted no economic recovery when some govern-
ment measures indicated that a recovery was underway.

Source: Anita Raghavan and David Wessel, “In Scraping Together
Economic Data, Forecasters Turn to Scrap-Metal Prices,” The Wall Street
Journal (April 27, 1992), C1.

15.2 PROBLEMS 15.5 Use the following time-series data to answer the given questions.

Time Period Value Time Period Value

1 27 6 66
2 31 7 71
3 58 8 86
4 63 9 101
5 59 10 97

a. Develop forecasts for periods 5 through 10 using 4-month moving averages.

b. Develop forecasts for periods 5 through 10 using 4-month weighted moving 
averages. Weight the most recent month by a factor of 4, the previous month by 2,
and the other months by 1.

c. Compute the errors of the forecasts in parts (a) and (b) and observe the differences
in the errors forecast by the two different techniques.

15.6 Following are time-series data for eight different periods. Use exponential smoothing
to forecast the values for periods 3 through 8. Use the value for the first period as the
forecast for the second period. Compute forecasts using two different values of alpha,



= .1 and = .8. Compute the errors for each forecast and compare the errors pro-
duced by using the two different exponential smoothing constants.

Time Period Value Time Period Value

1 211 5 242
2 228 6 227
3 236 7 217
4 241 8 203

15.7 Following are time-series data for nine time periods. Use exponential smoothing
with constants of .3 and .7 to forecast time periods 3 through 9. Let the value for
time period 1 be the forecast for time period 2. Compute additional forecasts for
time periods 4 through 9 using a 3-month moving average. Compute the errors for
the forecasts and discuss the size of errors under each method.

Time Period Value Time Period Value

1 9.4 6 11.0
2 8.2 7 10.3
3 7.9 8 9.5
4 9.0 9 9.1
5 9.8

15.8 The U.S. Census Bureau publishes data on factory orders for all manufacturing,
durable goods, and nondurable goods industries. Shown here are factory orders in
the United States over a 13-year period ($ billion).

a. Use these data to develop forecasts for the years 6 through 13 using a 5-year
moving average.

b. Use these data to develop forecasts for the years 6 through 13 using a 5-year
weighted moving average. Weight the most recent year by 6, the previous year by
4, the year before that by 2, and the other years by 1.

c. Compute the errors of the forecasts in parts (a) and (b) and observe the 
differences in the errors of the forecasts.

Year Factory Orders ($ billion)

1 2,512.7
2 2,739.2
3 2,874.9
4 2,934.1
5 2,865.7
6 2,978.5
7 3,092.4
8 3,356.8
9 3,607.6

10 3,749.3
11 3,952.0
12 3,949.0
13 4,137.0

15.9 The following data show the number of issues from initial public offerings (IPOs)
for a 13-year period released by the Securities Data Company. Use these data to
develop forecasts for the years 3 through 13 using exponential smoothing techniques
with alpha values of .2 and .9. Let the forecast for year 2 be the value for year 1.
Compare the results by examining the errors of the forecasts.

aa
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Year Number of Issues

1 332
2 694
3 518
4 222
5 209
6 172
7 366
8 512
9 667

10 571
11 575
12 865
13 609

There are several ways to determine trend in time-series data and one of the more prominent
is regression analysis. In Section 12.9, we explored the use of simple regression analysis in
determining the equation of a trend line. In time-series regression trend analysis, the response
variable, Y, is the variable being forecast, and the independent variable, X, represents time.

Many possible trend fits can be explored with time-series data. In this section we
examine only the linear model and the quadratic model because they are the easiest to
understand and simplest to compute. Because seasonal effects can confound trend analy-
sis, it is assumed here that no seasonal effects occur in the data or they were removed prior
to determining the trend.

Linear Regression Trend Analysis

The data in Table 15.5 represent 35 years of data on the average length of the workweek in
Canada for manufacturing workers. A regression line can be fit to these data by using the

TREND ANALYSIS15.3 

TABLE 15.5

Average Hours per Week in
Manufacturing by Canadian

Workers

Time Period Hours Time Period Hours

1 37.2 19 36.0

2 37.0 20 35.7

3 37.4 21 35.6

4 37.5 22 35.2

5 37.7 23 34.8

6 37.7 24 35.3

7 37.4 25 35.6

8 37.2 26 35.6

9 37.3 27 35.6

10 37.2 28 35.9

11 36.9 29 36.0

12 36.7 30 35.7

13 36.7 31 35.7

14 36.5 32 35.5

15 36.3 33 35.6

16 35.9 34 36.3

17 35.8 35 36.5

18 35.9

Source: Data prepared by the U.S. Bureau of Labor Statistics, Office of Productivity
and Technology.



time periods as the independent variable and length of workweek as the dependent vari-
able. Because the time periods are consecutive, they can be entered as X along with the
time-series data (Y ) into a regression analysis. The linear model explored in this exam-
ple is

where
Yi = data value for period i

Xti = ith time period

Figure 15.5 shows the Excel regression output for this example. By using the coefficients
of the X variable and intercept, the equation of the trend line can be determined to be

The slope indicates that for every unit increase in time period, Xt , a predicted decrease
of .0614 occurs in the length of the average workweek in manufacturing. Because the work-
week is measured in hours, the length of the average workweek decreases by an average of
(.0614)(60 minutes) = 3.7 minutes each year in Canada in manufacturing. The Y intercept,
37.4161, indicates that in the year prior to the first period of these data the average work-
week was 37.4161 hours.

The probability of the t ratio (.00000003) indicates that significant linear trend is present
in the data. In addition, R2 = .611 indicates considerable predictability in the model. Inserting
the various period values (1, 2, 3, . . . , 35) into the preceding regression equation produces the
predicted values of Y that are the trend. For example, for period 23 the predicted value is

The model was developed with 35 periods (years). From this model, the average work-
week in Canada in manufacturing for period 41 (the 41st year) can be forecast:

Figure 15.6 presents an Excel scatter plot of the average workweek lengths over the 35
periods (years). In this Excel plot, the trend line has been fitted through the points. Observe
the general downward trend of the data, but also note the somewhat cyclical nature of the
points. Because of this pattern, a forecaster might want to determine whether a quadratic
model is a better fit for trend.

YN = 37.4161 - .0614(41) = 34.9 hours

YN = 37.4161 - .0614(23) = 36.0 hours

YN = 37.4161 - .0614Xt

Yi = b0 + b1Xti + Hi
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.782
R Square 0.611
Adjusted R Square 0.600
Standard Error 0.5090
Observations 35

ANOVA

SS MS F
Significance

F

Regression 51.91 0.000000029
Residual

13.4467
0.2591

Total

df

1
33
34

13.4467
8.5487

21.9954

Coefficients Standard Error t Stat P-value

Intercept 212.81
Year

37.4161
−0.0614

0.1758
0.0085 −7.20

0.000000000
0.000000029

Excel Regression Output 
for Hours Worked Using

Linear Trend

FIGURE 15.5
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Regression Trend Analysis Using Quadratic Models

In addition to linear regression, forecasters can explore using quadratic regression models
to predict data by using the time-series periods. The quadratic regression model is

where
Yi = the time-series data value for period i

Xti = the ith period
Xti

2 = the square of the ith period

This model can be implemented in time-series trend analysis by using the time peri-
ods squared as an additional predictor. Thus, in the hours worked example, besides using
Xt = 1, 2, 3, 4, . . . , 35 as a predictor, we would also use 1, 4, 9, 16, . . . , 1225 as a predictor.

Table 15.6 provides the data needed to compute a quadratic regression trend model on
the manufacturing workweek data. Note that the table includes the original data, the time
periods, and the time periods squared.

X 2
t =

Yi = b0 + b1Xti + b2Xti
2 + Hi
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TABLE 15.6

Data for Quadratic Fit of
Manufacturing Workweek

Example

Time Period (Time Period)2 Hours Time Period (Time Period)2 Hours

1 1 37.2 19 361 36.0

2 4 37.0 20 400 35.7

3 9 37.4 21 441 35.6

4 16 37.5 22 484 35.2

5 25 37.7 23 529 34.8

6 36 37.7 24 576 35.3

7 49 37.4 25 625 35.6

8 64 37.2 26 676 35.6

9 81 37.3 27 729 35.6

10 100 37.2 28 784 35.9

11 121 36.9 29 841 36.0

12 144 36.7 30 900 35.7

13 169 36.7 31 961 35.7

14 196 36.5 32 1024 35.5

15 225 36.3 33 1089 35.6

16 256 35.9 34 1156 36.3

17 289 35.8 35 1225 36.5

18 324 35.9

Source: Data prepared by the U.S. Bureau of Labor Statistics, Office of Productivity and Technology.



The Excel computer output for this quadratic trend regression analysis is shown in
Figure 15.7. We see that the quadratic regression model produces an R2 of .761 with both
Xt and X 2

t in the model. The linear model produced an R2 of .611 with Xt alone. The quad-
ratic regression seems to add some predictability to the trend model. Figure 15.8 displays
an Excel scatter plot of the week work data with a second-degree polynomial fit through
the data.
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.873
R Square 0.761
Adjusted R Square 0.747
Standard Error 0.4049
Observations 35

ANOVA

Significance
F

Regression

F

51.07 0.0000000001
Residual

MS

8.3741
0.1640

Total

df

2
32
34

SS

16.7483
5.2472

21.9954

P-value

Intercept 0.0000000

Coefficients

38.1644
−0.1827

Standard Error

0.2177
0.0279

t Stat

175.34
−6.55 0.0000002Time Period

(Time Period)Sq 0.00080.0034 4.49 0.0000876

Excel Regression Output for
Canadian Manufacturing

Example with Quadratic Trend

FIGURE 15.7
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DEMONSTRATION
PROBLEM 15.4

Following are data on the employed U.S. civilian labor force
(100,000) for 1991 through 2007, obtained from the U.S. Bureau of
Labor Statistics. Use regression analysis to fit a trend line through
the data. Explore a quadratic regression trend also. Does either
model do well? Compare the two models.
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Year Labor Force (100,000)

1991 117.72
1992 118.49
1993 120.26
1994 123.06
1995 124.90
1996 126.71
1997 129.56
1998 131.46
1999 133.49
2000 136.89
2001 136.93
2002 136.49
2003 137.74
2004 139.25
2005 141.73
2006 144.43
2007 146.05

Solution

Recode the time periods as 1 through 17 and let that be X. Run the regression analysis
with the labor force members as Y, the dependent variable, and the time period as the
independent variable. Now square all the X values, resulting in 1, 4, 9, . . . , 225, 256, 289
and let those formulate a second predictor (X 2). Run the regression analysis to predict
the number in the labor force with both the time period variable (X) and the (time
period)2 variable. The Minitab output for each of these regression analyses follows.

Regression Analysis: Labor Force Versus Year

The regression equation is
Labor Force = − 3390 + 1.76 Year

Labor Force = − 119238 + 118 Year − 0.0290 Year Sq

Predictor Coef SE Coef T P
Constant 3390.0 26.60 0.000
Year 1.76191 
S = 1.28762 R Sq = 98.1% R Sq(adj) = 97.9%
Analysis of Variance
Source DF SS MS F P
Regression        1   1266.6    1266.6    763.93    0.000
Residual Error   15     24.9         1.7
Total            16   1291.4

Regression Analysis: Labor Force Versus Year, Year Sq 

127.4
0.06375 27.64 0.000

The regression equation is

Predictor Coef SE Coef T P
Constant 119238  2.29 0.038
Year           117.67 

 −0.02899 Year Sq  

S = 1.14499 R Sq = 98.6% R Sq(adj) = 98.4%
Analysis of Variance
Source DF SS MS F P
Regression        2   1273.08   636.54    485.54    0.000
Residual Error   14     18.35     1.31
Total            16   1291.44

51966
51.99 2.26

−2.230.01300
0.040
0.043

A comparison of the models shows that the linear model accounts for over 98%
of the variability in the labor force figures, and the quadratic model only increases



that predictability to 98.6%. Shown next are Minitab scatter plots of the data. First is
the linear model, and then the quadratic model is presented.
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Holt’s Two-Parameter Exponential 
Smoothing Method

The exponential smoothing technique presented in Section 15.2 (single exponential
smoothing) is appropriate to use in forecasting stationary time-series data but is ineffective
in forecasting time-series data with a trend because the forecasts will lag behind the trend.
However, another exponential smoothing technique, Holt’s two-parameter exponential
smoothing method, can be used for trend analysis. Holt’s technique uses weights ( ) to
smooth the trend in a manner similar to the smoothing used in single exponential smooth-
ing ( ). Using these two weights and several equations, Holt’s method is able to developa

b

15.3 Trend Analysis 609
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forecasts that include both a smoothing value and a trend value. A more detailed explana-
tion of Holt’s two-parameter exponential smoothing method, along with examples and
practice problems, can be accessed at WileyPLUS and at the Wiley Web site for this text.

15.3 PROBLEMS 15.10 The “Economic Report to the President of the United States” included data on the
amounts of manufacturers’ new and unfilled orders in millions of dollars. Shown
here are the figures for new orders over a 21-year period. Use a computer to develop
a regression model to fit the trend effects for these data. Use a linear model and
then try a quadratic model. How well does either model fit the data?

Year Total Number of New Orders Year Total Number of New Orders

1 55,022 12 168,025
2 55,921 13 162,140
3 64,182 14 175,451
4 76,003 15 192,879
5 87,327 16 195,706
6 85,139 17 195,204
7 99,513 18 209,389
8 115,109 19 227,025
9 131,629 20 240,758

10 147,604 21 243,643
11 156,359

15.11 The following data on the number of union members in the United States for the
years 1984 through 2008 are provided by the U.S. Bureau of Labor Statistics. Using
regression techniques discussed in this section, analyze the data for trend. Develop a
scatter plot of the data and fit the trend line through the data. Discuss the strength
of the model.

Union Members Union Members
Year (1000s) Year (1000s)

1984 17,340 1997 16,110
1985 16,996 1998 16,211
1986 16,975 1999 16,477
1987 16,913 2000 16,334
1988 17,002 2001 16,305
1989 16,960 2002 16,145
1990 16,740 2003 15,776
1991 16,568 2004 15,472
1992 16,390 2005 15,685
1993 16,598 2006 15,359
1994 16,748 2007 15,670
1995 16,360 2008 16,098
1996 16,269

15.12 Shown below are dollar figures for commercial and industrial loans at all 
commercial banks in the United States as recorded for the month of April during a
recent 9-year period and published by the Federal Reserve Bank of St. Louis. Plot
the data, fit a trend line, and discuss the strength of the regresssion model. In 
addition, explore a quadratic trend and compare the results of the two models.

Year Loans ($ billions)

1 741.0
2 807.4
3 871.3
4 951.6
5 1,033.6
6 1,089.8
7 1,002.6
8 940.8
9 888.5
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Earlier in the chapter, we discussed the notion that time-series data consist of four elements:
trend, cyclical effects, seasonality, and irregularity. In this section, we examine techniques for
identifying seasonal effects. Seasonal effects are patterns of data behavior that occur in peri-
ods of time of less than one year. How can we separate out the seasonal effects?

Decomposition

One of the main techniques for isolating the effects of seasonality is decomposition. The
decomposition methodology presented here uses the multiplicative model as its basis. The
multiplicative model is:

where
T = trend
C = cyclicality
S = seasonality
I = irregularity

To illustrate the decomposition process, we will use the 5-year quarterly time-series
data on U.S. shipments of household appliances given in Table 15.7. Figure 15.9 provides a
graph of these data.

According to the multiplicative time-series model, T C S I, the data can contain the
elements of trend, cyclical effects, seasonal effects, and irregular fluctuations. The process
of isolating the seasonal effects begins by determining T C for each value and dividing the
time-series data (T C S I ) by T C. The result is

The resulting expression contains seasonal effects along with irregular fluctuations. After
reducing the time-series data to the effects of SI (seasonality and irregularity), a method for
eliminating the irregular fluctuations can be applied, leaving only the seasonal effects.

Suppose we start with time-series data that cover several years and are measured in
quarterly increments. If we average the data over four quarters, we will have “dampened”
the seasonal effects of the data because the rise and fall of values during the quarterly peri-
ods will have been averaged out over the year.

We begin by computing a 4-quarter moving average for quarter 1 through quarter 4 of
year 1, using the data from Table 15.7.

4-quarter average =
4,009 + 4,321 + 4,224 + 3,944

4
= 4,124.5

T # C # S # I

T # C
= S # I

####
#

###

T # C # S # I

SEASONAL EFFECTS15.4 
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Year Quarter Shipments

1 1 4009

2 4321

3 4224

4 3944

2 1 4123

2 4522

3 4657

4 4030

3 1 4493

2 4806

3 4551

4 4485

4 1 4595

2 4799

3 4417

4 4258

5 1 4245

2 4900

3 4585

4 4533

TABLE 15.7

Shipments of Household
Appliances
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TABLE 15.8

Development of 4-Quarter Moving Averages for the Household Appliance Data

4-Quarter Ratios of Actual 
Actual Values 4-Quarter 2-Year Centered Moving Values to Moving 

Quarter (T C S I ) Moving Total Moving Total Average (T C ) Averages (S I ) (100)

1 (year 1) 4,009

2 4,321

3 4,224
16,498

33,110 4,139 102.05

4 3,944
16,612

33,425 4,178 94.40

1 (year 2) 4,123
16,813

34,059 4,257 96.85

2 4,522
17,246

34,578 4,322 104.63

3 4,657
17,332

35,034 4,379 106.35

4 4,030
17,702

35,688 4,461 90.34

1 (year 3) 4,493
17,986

35,866 4,483 100.22

2 4,806
17,880

36,215 4,527 106.16

3 4,551
18,335

36,772 4,597 99.00

4 4,485
18,437

36,867 4,608 97.33

1 (year 4) 4,595
18,430

36,726 4,591 100.09

2 4,799
18,296

36,365 4,546 105.57

3 4,417
18,069

35,788 4,474 98.73

4 4,258
17,719

35,539 4,442 95.86

1 (year 5) 4,245
17,820

35,808 4,476 94.84

2 4,900
17,988

36,251 4,531 108.14

3 4,585
18,263

4 4,533

######

The 4-quarter moving average for quarter 1 through quarter 4 of year 1 is 4,124.5
($ million) worth of shipments. Because the 4-quarter average is in the middle of the four
quarters, it would be placed in the decomposition table between quarter 2 and quarter 3.

Quarter 1
Quarter 2

——– 4,124.5
Quarter 3
Quarter 4

To remove seasonal effects, we need to determine a value that is “centered” with each
month. To find this value, instead of using a 4-quarter moving average, we use 4-quarter
moving totals and then sum two consecutive moving totals. This 8-quarter total value is
divided by 8 to produce a “centered” 4-quarter moving average that lines up across from a
quarter. Using this method is analogous to computing two consecutive 4-quarter moving
averages and averaging them, thus producing a value that falls on line with a quarter, in
between the two averages. The results of using this procedure on the data from Table 15.7
are shown in Table 15.8 in column 5.

A 4-quarter moving total can be computed on these data starting with quarter 1 of
year 1 through quarter 4 of year 1 as follows:

In Table 15.8, 16,498 is between quarter 2 and quarter 3 of year 1. The 4-month mov-
ing total for quarter 2 of year 1 through quarter 1 of year 2 is

In Table 15.8, this value is between quarter 3 and quarter 4 of year 1. The 8-quarter
(2-year) moving total is computed for quarter 3 of year 1 as

8-Quarter Moving Total = 16,498 + 16,612 = 33,110

Second Moving Total = 4,321 + 4,224 + 3,944 + 4,123 = 16,612

First Moving Total = 4,009 + 4,321 + 4,224 + 3,944 = 16,498



Notice that in Table 15.8 this value is centered with quarter 3 of year 1 because it is
between the two adjacent 4-quarter moving totals. Dividing this total by 8 produces the
4-quarter moving average for quarter 3 of year 1 shown in column 5 of Table 15.8.

Column 3 contains the uncentered 4-quarter moving totals, column 4 contains the 2-
year centered moving totals, and column 5 contains the 4-quarter centered moving averages.

The 4-quarter centered moving averages shown in column 5 of Table 15.8 represent
T C. Seasonal effects have been removed from the original data (actual values) by sum-
ming across the 4-quarter periods. Seasonal effects are removed when the data are summed
across the time periods that include the seasonal periods and the irregular effects are
smoothed, leaving only trend and cycle.

Column 2 of Table 15.8 contains the original data (actual values), which include all
effects (T C S I ). Column 5 contains only the trend and cyclical effects, T C. If column
2 is divided by column 5, the result is S I, which is displayed in column 6 of Table 15.8.

The values in column 6, sometimes called ratios of actuals to moving average, have been
multiplied by 100 to index the values. These values are thus seasonal indexes. An index number
is a ratio of a measure taken during one time frame to that same measure taken during another
time frame, usually denoted as the time period. Often the ratio is multipled by 100 and expressed
as a percentage. Index numbers will be discussed more fully in section 15.6. Column 6 contains
the effects of seasonality and irregular fluctuations. Now we must remove the irregular effects.

Table 15.9 contains the values from column 6 of Table 15.8 organized by quarter and
year. Each quarter in these data has four seasonal indexes. Throwing out the high and low
index for each quarter eliminates the extreme values. The remaining two indexes are aver-
aged as follows for quarter 1.

Quarter 1: 96.85 100.22 100.09 94.84
Eliminate: 94.84 and 100.22
Average the Remaining Indexes:

Table 15.10 gives the final seasonal indexes for all the quarters of these data.
After the final adjusted seasonal indexes are determined, the original data can be

deseasonalized. The deseasonalization of actual values is relatively common with data
published by the government and other agencies. Data can be deseasonalized by dividing
the actual values, which consist of T C S I, by the final adjusted seasonal effects.

Because the seasonal effects are in terms of index numbers, the seasonal indexes must
be divided by 100 before deseasonalization. Shown here are the computations for desea-
sonalizing the household appliance data from Table 15.7 for quarter 1 of year 1.

Table 15.11 gives the deseasonalized data for this example for all years.
Figure 15.10 is a graph of the deseasonalized data.

 Year 1 Quarter 1 Deseasonalized Value =
4,009

.9847
= 4,071.3

 Year 1 Quarter 1 Seasonal Index = 98.47
 Year 1 Quarter 1 Actual = 4,009

Deseasonalized Data =
T # C # S # I

S
= T # C # I

###

X
-

Q1index =
96.85 + 100.09

2
= 98.47

#
####

#

33,110

8
= 4,139
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TABLE 15.9

Seasonal Indexes for the
Household Appliance Data

Quarter Year 1 Year 2 Year 3 Year 4 Year 5

1 — 96.85 100.22 100.09 94.84

2 — 104.63 106.16 105.57 108.14

3 102.05 106.35 99.00 98.73 —

4 94.40 90.34 97.33 95.86 —

Quarter Index

1 98.47

2 105.87

3 100.53

4 95.13

TABLE 15.10

Final Seasonal Indexes for the
Household Appliance Data
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Finding Seasonal Effects with the Computer

Through Minitab, decomposition can be performed on the computer with relative ease.
The commands for this procedure are given at the end of the chapter in the Using the
Computer section. Figure 15.11 displays Minitab output for seasonal decomposition of the
household appliance example. Note that the seasonal indexes are virtually identical to those
shown in Table 15.10 computed by hand.

Winters’ Three-Parameter Exponential 
Smoothing Method

Holt’s two-parameter exponential smoothing method can be extended to include seasonal
analysis. This technique, referred to as Winters’ method, not only smoothes observations

TABLE 15.11

Deseasonalized Household
Appliance Data

Shipments Seasonal Deseasonalized
Actual Values Indexes Data

Year Quarter (T C S I ) S T C I

1 1 4,009 98.47 4,071

2 4,321 105.87 4,081

3 4,224 100.53 4,202

4 3,944 95.13 4,146

2 1 4,123 98.47 4,187

2 4,522 105.87 4,271

3 4,657 100.53 4,632

4 4,030 95.13 4,236

3 1 4,493 98.47 4,563

2 4,806 105.87 4,540

3 4,551 100.53 4,527

4 4,485 95.13 4,715

4 1 4,595 98.47 4,666

2 4,799 105.87 4,533

3 4,417 100.53 4,394

4 4,258 95.13 4,476

5 1 4,245 98.47 4,311

2 4,900 105.87 4,628

3 4,585 100.53 4,561

4 4,533 95.13 4,765 

#####
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Household Appliance Data
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and trend but also smoothes the seasonal effects. In addition to the single exponential
smoothing weight of a and the trend weight of b, Winters’ method introduces g, a weight
for seasonality. Using these three weights and several equations, Winters’ method is able to
develop forecasts that include a smoothing value for observations, a trend value, and a sea-
sonal value. A more detailed explanation of Winters’ three-parameter exponential smooth-
ing method along with examples and practice problems is presented in WileyPLUS and at
the Wiley Web site for this text.

Time-Series Decomposition for Shipments
Multiplicative Model
Data 
Length 
NMissing

Shipments 
20 
0

Seasonal

1 
2 
3 
4

0.98469 
1.05871 
1.00536 
0.95124 

Indices
Period Index

Minitab Output for Seasonal
Decomposition of the

Household Appliance Data

FIGURE 15.11
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15.4 PROBLEMS 15.13 The U.S. Department of Agriculture publishes statistics on the production of
various types of food commodities by month. Shown here are the production 
figures on broccoli for January of a recent year through December of the next year.
Use these data to compute 12-month centered moving averages (T C). Using these
computed values, determine the seasonal effects (S I).

Broccoli Broccoli 
Month (million pounds) Month (million pounds)

January (1st year) 132.5 January (2nd year) 104.9
February 164.8 February 99.3
March 141.2 March 102.0
April 133.8 April 122.4
May 138.4 May 112.1
June 150.9 June 108.4
July 146.6 July 119.0
August 146.9 August 119.0
September 138.7 September 114.9
October 128.0 October 106.0
November 112.4 November 111.7
December 121.0 December 112.3

15.14 The U.S. Department of Commerce publishes census information on 
manufacturing. Included in these figures are monthly shipment data for the 
paperboard container and box industry shown on the next page for 6 years.
The shipment figures are given in millions of dollars. Use the data to analyze
the effects of seasonality, trend, and cycle. Develop the trend model with a linear 
model only.

#
#
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Month Shipments Month Shipments

January (year 1) 1,891 January (year 4) 2,336
February 1,986 February 2,474
March 1,987 March 2,546
April 1,987 April 2,566
May 2,000 May 2,473
June 2,082 June 2,572
July 1,878 July 2,336
August 2,074 August 2,518
September 2,086 September 2,454
October 2,045 October 2,559
November 1,945 November 2,384
December 1,861 December 2,305

Month Shipments Month Shipments

January (year 2) 1,936 January (year 5) 2,389
February 2,104 February 2,463
March 2,126 March 2,522
April 2,131 April 2,417
May 2,163 May 2,468
June 2,346 June 2,492
July 2,109 July 2,304
August 2,211 August 2,511
September 2,268 September 2,494
October 2,285 October 2,530
November 2,107 November 2,381
December 2,077 December 2,211

Month Shipments Month Shipments

January (year 3) 2,183 January (year 6) 2,377
February 2,230 February 2,381
March 2,222 March 2,268
April 2,319 April 2,407
May 2,369 May 2,367
June 2,529 June 2,446
July 2,267 July 2,341
August 2,457 August 2,491
September 2,524 September 2,452
October 2,502 October 2,561
November 2,314 November 2,377
December 2,277 December 2,277

Data values gathered over time are often correlated with values from past time periods.
This characteristic can cause problems in the use of regression in forecasting and at the
same time can open some opportunities. One of the problems that can occur in regressing
data over time is autocorrelation.

Autocorrelation

Autocorrelation, or serial correlation, occurs in data when the error terms of a regression
forecasting model are correlated. The likelihood of this occurring with business data increases
over time, particularly with economic variables. Autocorrelation can be a problem in using
regression analysis as the forecasting method because one of the assumptions underlying
regression analysis is that the error terms are independent or random (not correlated). In
most business analysis situations, the correlation of error terms is likely to occur as positive

AUTOCORRELATION AND AUTOREGRESSION15.5
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autocorrelation (positive errors are associated with positive errors of comparable magnitude
and negative errors are associated with negative errors of comparable magnitude).

When autocorrelation occurs in a regression analysis, several possible problems might
arise. First, the estimates of the regression coefficients no longer have the minimum vari-
ance property and may be inefficient. Second, the variance of the error terms may be
greatly underestimated by the mean square error value. Third, the true standard deviation
of the estimated regression coefficient may be seriously underestimated. Fourth, the confi-
dence intervals and tests using the t and F distributions are no longer strictly applicable.

First-order autocorrelation results from correlation between the error terms of adja-
cent time periods (as opposed to two or more previous periods). If first-order autocorre-
lation is present, the error for one time period, et , is a function of the error of the previous
time period, et -1, as follows.

The first-order autocorrelation coefficient, , measures the correlation between the error
terms. It is a value that lies between -1 and 0 and +1, as does the coefficient of correlation
discussed in Chapter 12. vt is a normally distributed independent error term. If positive
autocorrelation is present, the value of is between 0 and +1. If the value of is 0, et = vt ,
which means there is no autocorrelation and et is just a random, independent error term.

One way to test to determine whether autocorrelation is present in a time-series regres-
sion analysis is by using the Durbin-Watson test for autocorrelation. Shown next is the for-
mula for computing a Durbin-Watson test for autocorrelation.

rr

r

et = ret - 1 + nt

DURBIN-WATSON TEST

where
n = the number of observations

D =
a

n

t = 2

(et - et - 1)
2

a
n

t = 1

e t
2

Note from the formula that the Durbin-Watson test involves finding the difference
between successive values of error (et - et -1). If errors are positively correlated, this differ-
ence will be smaller than with random or independent errors. Squaring this term elimi-
nates the cancellation effects of positive and negative terms.

The null hypothesis for this test is that there is no autocorrelation. For a two-tailed test,
the alternative hypothesis is that there is autocorrelation.

As mentioned before, most business forecasting autocorrelation is positive autocorre-
lation. In most cases, a one-tailed test is used.

In the Durbin-Watson test, D is the observed value of the Durbin-Watson statistic using
the residuals from the regression analysis. A critical value for D can be obtained from the
values of a, n, and k by using Table A.9 in the appendix, where a is the level of significance,
n is the number of data items, and k is the number of predictors. Two Durbin-Watson tables
are given in the appendix. One table contains values for a = .01 and the other for a = .05.
The Durbin-Watson tables in Appendix A include values for dU and dL. These values range
from 0 to 4. If the observed value of D is above dU , we fail to reject the null hypothesis and
there is no significant autocorrelation. If the observed value of D is below dL , the null
hypothesis is rejected and there is autocorrelation. Sometimes the observed statistic, D, is
between the values of dU and dL. In this case, the Durbin-Watson test is inconclusive.

Ha: r 7 0
H0: r = 0

Ha: r Z 0
H0: r = 0
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As an example, consider Table 15.12, which contains crude oil production and natural
gas withdrawal data for the United States over a 25-year period published by the Energy
Information Administration in their Annual Energy Review. A regression line can be fit
through these data to determine whether the amount of natural gas withdrawals can be
predicted by the amount of crude oil production. The resulting errors of prediction can be
tested by the Durbin-Watson statistic for the presence of significant positive autocorrela-
tion by using a = .05. The hypotheses are

The following regression equation was obtained by means of a Minitab computer
analysis.

Using the values for crude oil production (X) from Table 15.12 and the regression
equation shown here, predicted values of Y (natural gas withdrawals) can be computed.
From the predicted values and the actual values, the errors of prediction for each time
interval, et , can be calculated. Table 15.13 shows the values of , et , e2

t , (et - et-1), and 
(et - et-1)

2 for this example. Note that the first predicted value of Y is

The error for year 1 is

The value of et - et-1 for year 1 and year 2 is computed by subtracting the error for year
1 from the error of year 2.

eyear2 - eyear1 = 1.8920 - 2.1493 = -0.2573

Actual1 - Predicted1 = 17.573 - 15.4237 = 2.1493

YN1 = 22.7372 - 0.8507(8.597) = 15.4237

YN

Natural Gas Withdrawals = 22.7372 - 0.8507 Crude Oil Production

Ha: r 7 0
H0: r = 0

TABLE 15.12

U.S. Crude Oil Production and
Natural Gas Withdrawals over

a 25-Year Period

Crude Oil Natural Gas Withdrawals
Production from Natural Gas Wells

Year (1000s) (1000s)

1 8.597 17.573

2 8.572 17.337

3 8.649 15.809

4 8.688 14.153

5 8.879 15.513

6 8.971 14.535

7 8.680 14.154

8 8.349 14.807

9 8.140 15.467

10 7.613 15.709

11 7.355 16.054

12 7.417 16.018

13 7.171 16.165

14 6.847 16.691

15 6.662 17.351

16 6.560 17.282

17 6.465 17.737

18 6.452 17.844

19 6.252 17.729

20 5.881 17.590

21 5.822 17.726

22 5.801 18.129

23 5.746 17.795

24 5.681 17.819

25 5.430 17.739
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The Durbin-Watson statistic can now be computed:

Because we used a simple linear regression, the value of k is 1. The sample size, n, is 25,
and a = .05. The critical values in Table A.9 are

Because the computed D statistic, .6873, is less than the value of dL = 1.29, the null
hypothesis is rejected. A positive autocorrelation is present in this example.

Ways to Overcome the Autocorrelation Problem

Several approaches to data analysis can be used when autocorrelation is present. One uses
additional independent variables and another transforms the independent variable.

Addition of Independent Variables

Often the reason autocorrelation occurs in regression analyses is that one or more impor-
tant predictor variables have been left out of the analysis. For example, suppose a researcher
develops a regression forecasting model that attempts to predict sales of new homes by
sales of used homes over some period of time. Such a model might contain significant
autocorrelation. The exclusion of the variable “prime mortgage interest rate” might be a

dU = 1.45 and dL = 1.29

D =
a

n

t = 2

(et - et - 1)
2

a
n

t = 1

e2
t

=
9.9589

14.4897
= .6873

TABLE 15.13

Predicted Values and Error
Terms for the Crude Oil

Production and Natural Gas
Withdrawal Data

Year et et - et-1 (et - et-1)2

1 15.4237 2.1493 4.6195 — —

2 15.4450 1.8920 3.5797 -0.2573 0.0662

3 15.3795 0.4295 0.1845 -1.4625 2.1389

4 15.3463 -1.1933 1.4240 -1.6228 2.6335

5 15.1838 0.3292 0.1084 1.5225 2.3180

6 15.1056 -0.5706 0.3256 -0.8998 0.8096

7 15.3531 -1.1991 1.4378 -0.6285 0.3950

8 15.6347 -0.8277 0.6851 0.3714 0.1379

9 15.8125 -0.3455 0.1194 0.4822 0.2325

10 16.2608 -0.5518 0.3045 -0.2063 0.0426

11 16.4803 -0.4263 0.1817 0.1255 0.0158

12 16.4276 -0.4096 0.1678 0.0167 0.0003

13 16.6368 -0.4718 0.2226 -0.0622 0.0039

14 16.9125 -0.2215 0.0491 0.2503 0.0627

15 17.0698 0.2812 0.0791 0.5027 0.2527

16 17.1566 0.1254 0.0157 -0.1558 0.0243

17 17.2374 0.4996 0.2496 0.3742 0.1400

18 17.2485 0.5955 0.3546 0.0959 0.0092

19 17.4186 0.3104 0.0963 -0.2851 0.0813

20 17.7342 -0.1442 0.0208 -0.4546 0.2067

21 17.7844 -0.0584 0.0034 0.0858 0.0074

22 17.8023 0.3267 0.1067 0.3851 0.1483

23 17.8491 -0.0541 0.0029 -0.3808 0.1450

24 17.9044 -0.0854 0.0073 -0.0313 0.0010

25 18.1179 -0.3789 0.1436 -.02935 0.0861

14.4897 9.9589©(et - et - 1)
2 =©e2

t  =

e t
2YN
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factor driving the autocorrelation between the other two variables. Adding this variable to
the regression model might significantly reduce the autocorrelation.

Transforming Variables

When the inclusion of additional variables is not helpful in reducing autocorrelation to an
acceptable level, transforming the data in the variables may help to solve the problem. One
such method is the first-differences approach. With the first-differences approach, each
value of X is subtracted from each succeeding time period value of X; these “differences”
become the new and transformed X variable. The same process is used to transform the Y
variable. The regression analysis is then computed on the transformed X and transformed
Y variables to compute a new model that is hopefully free of significant autocorrelation
effects.

Another way is to generate new variables by using the percentage changes from period
to period and regressing these new variables. A third way is to use autoregression models.

Autoregression

A forecasting technique that takes advantage of the relationship of values (Yt) to previous-
period values (Yt-1, Yt-2, Yt-3 , . . .) is called autoregression. Autoregression is a multiple regres-
sion technique in which the independent variables are time-lagged versions of the dependent
variable, which means we try to predict a value of Y from values of Y from previous time peri-
ods. The independent variable can be lagged for one, two, three, or more time periods. An
autoregressive model containing independent variables for three time periods looks like this:

YN = b0 + b1Yt-1 + b2Yt-2 + b3Yt-3

TABLE 15.14

Time-Lagged Natural Gas Data
Nat. Gas One Period Two Period

Withdrawal Lagged Lagged 
Year Yt Yt-1(X1) Yt-2 (X2)

1 17.573 — —

2 17.337 17.573 —

3 15.809 17.337 17.573

4 14.153 15.809 17.337

5 15.513 14.153 15.809

6 14.535 15.513 14.153

7 14.154 14.535 15.513

8 14.807 14.154 14.535

9 15.467 14.807 14.154

10 15.709 15.467 14.807

11 16.054 15.709 15.467

12 16.018 16.054 15.709

13 16.165 16.018 16.054

14 16.691 16.165 16.018

15 17.351 16.691 16.165

16 17.282 17.351 16.691

17 17.737 17.282 17.351

18 17.844 17.737 17.282

19 17.729 17.844 17.737

20 17.590 17.729 17.844

21 17.726 17.590 17.729

22 18.129 17.726 17.590

23 17.795 18.129 17.726

24 17.819 17.795 18.129

25 17.739 17.819 17.795
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As an example, we shall attempt to predict the volume of natural gas withdrawal, dis-
played in Table 15.12, by using data lagged for both one and two time periods. The data
used in this analysis are displayed in Table 15.14. Using Excel, a multiple regression model
is developed to predict the values of Yt by the values of Yt-1 and Yt-2. The results appear in
Figure 15.12. Note that the regression analysis does not use data from years 1 and 2 of
Table 15.14 because there are no values for the two lagged variables for one or both of
those years.

The autoregression model is

The relatively high value of R2 (74.6%) and relatively small value of se (0.693) indicate
that this regression model has fairly strong predictability. Interestingly, the one-period
lagged variable is quite significant (t = 4.36 with a p-value of .000306), but the two-period
lagged variable is not significant (t = -0.50 with a p-value of 0.62), indicating the presence
of first-order autocorrelation.

Autoregression can be a useful tool in locating seasonal or cyclical effects in time series
data. For example, if the data are given in monthly increments, autoregression using vari-
ables lagged by as much as 12 months can search for the predictability of previous monthly
time periods. If data are given in quarterly time periods, autoregression of up to four peri-
ods removed can be a useful tool in locating the predictability of data from previous quar-
ters. When the time periods are in years, lagging the data by yearly periods and using
autoregression can help in locating cyclical predictability.

Yt = 2.4081 + 0.9678Yt - 1 - 0.1128Yt - 2

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.864
R Square 0.746
Adjusted R Square 0.721
Standard Error 0.693
Observations 23

ANOVA
df SS MS F Significance F

Regression 2 14.1602 29.44 0.0000011
Residual 20 0.4809
Total 22

28.3203
9.6187

37.9390

Coefficients Standard Error t Stat P-value

Intercept 2.4081 1.9608 1.23 0.233658
Lagged 1 0.9678 0.2221 4.36 0.000306
Lagged 2 −0.1128 0.2239 −0.50 0.620075

Excel Autoregression Results
for Natural Gas Withdrawal

Data

FIGURE 15.12

15.5 PROBLEMS 15.15 The U.S. Department of Labor publishes consumer price indexes (CPIs) on many
commodities. Following are the percentage changes in the CPIs for food and for
shelter for the years 1980 through 2008. Use these data to develop a linear regression
model to forecast the percentage change in food CPIs by the percentage change in
housing CPIs. Compute a Durbin-Watson statistic to determine whether significant
autocorrelation is present in the model. Let a = .05.
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Year Food Housing Year Food Housing

1980 8.5 15.7 1995 2.8 2.6
1981 7.8 11.5 1996 3.2 2.9
1982 4.1 7.2 1997 2.6 2.6
1983 2.3 2.7 1998 2.2 2.3
1984 3.7 4.1 1999 2.2 2.2
1985 2.3 4.0 2000 2.3 3.5
1986 3.3 3.0 2001 2.8 4.2
1987 4.0 3.0 2002 1.5 3.1
1988 4.1 3.8 2003 3.6 2.2
1989 5.7 3.8 2004 2.7 3.0
1990 5.8 4.5 2005 2.3 4.0
1991 3.6 4.0 2006 3.3 2.1
1992 1.4 2.9 2007 3.0 4.9
1993 2.1 2.7 2008 2.4 5.9
1994 2.3 2.5

15.16 Use the data from Problem 15.15 to create a regression forecasting model using the
first-differences data transformation. How do the results from this model differ
from those obtained in Problem 15.15?

15.17 The Federal Deposit Insurance Corporation (FDIC) releases data on bank failures.
Following are data on the number of U.S. bank failures in a given year and the total
amount of bank deposits (in $ millions) involved in such failures for a given year.
Use these data to develop a simple regression forecasting model that attempts to
predict the failed bank assets involved in bank closings by the number of bank 
failures. Compute a Durbin-Watson statistic for this regression model and 
determine whether significant autocorrelation is present. Let a = .05.

Year Failures Failed Bank Assets

1 11 8,189
2 7 104
3 34 1,862
4 45 4,137
5 79 36,394
6 118 3,034
7 144 7,609
8 201 7,538
9 221 56,620

10 206 28,507
11 159 10,739
12 108 43,552
13 100 16,915
14 42 2,588
15 11 825
16 6 753
17 5 186
18 1 27

15.18 Use the data in Problem 15.17 to compute a regression model after recoding the
data by the first-differences approach. Compute a Durbin-Watson statistic to 
determine whether significant autocorrelation is present in this first-differences
model. Compare this model with the model determined in Problem 15.17, and
compare the significance of the Durbin-Watson statistics for the two problems.
Let a = .05.

15.19 Current Construction Reports from the U.S. Census Bureau contain data on new 
privately owned housing units. Data on new privately owned housing units (1000s)
built in the West between 1980 and 2006 follow. Use these time-series data to
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develop an autoregression model with a one-period lag. Now try an autoregression
model with a two-period lag. Discuss the results and compare the two models.

One particular type of descriptive measure that is useful in allowing comparisons of data
over time is the index number. An index number is, in part, a ratio of a measure taken dur-
ing one time frame to that same measure taken during another time frame, usually denoted
as the base period. Often the ratio is multiplied by 100 and is expressed as a percentage.
When expressed as a percentage, index numbers serve as an alternative to comparing raw
numbers. Index number users become accustomed to interpreting measures for a given
time period in light of a base period on a scale in which the base period has an index of
100(%). Index numbers are used to compare phenomena from one time period to another
and are especially helpful in highlighting interperiod differences.

Index numbers are widely used around the world to relate information about stock
markets, inflation, sales, exports and imports, agriculture, and many other things. Some
examples of specific indexes are the employment cost index, price index for construction,
index of manufacturing capacity, producer price index, consumer price index, Dow Jones
industrial average, index of output, and Nikkei 225 average. This section, although recog-
nizing the importance of stock indexes and others, will focus on price indexes.

INDEX NUMBERS15.6

Year Housing Starts (1000) Year Housing Starts (1000)

1980 333.0 1994 453.0
1981 270.4 1995 430.3
1982 281.1 1996 468.5
1983 443.0 1997 464.2
1984 432.3 1998 521.9
1985 428.9 1999 550.4
1986 443.2 2000 529.7
1987 413.1 2001 556.9
1988 391.6 2002 606.5
1989 361.5 2003 670.1
1990 318.1 2004 745.5
1991 308.4 2005 756.1
1992 382.2 2006 826.8
1993 419.5

15.20 The U.S. Department of Agriculture publishes data on the production, utilization,
and value of fruits in the United States. Shown here are the amounts of noncitrus
fruit processed into juice (in kilotons) for a 25-year period. Use these data to
develop an autoregression forecasting model with a two-period lag. Discuss the
results of this analysis.

Year Processed Juice Year Processed Juice

1 598 14 1135
2 768 15 1893
3 863 16 1372
4 818 17 1547
5 841 18 1450
6 1140 19 1557
7 1285 20 1742
8 1418 21 1736
9 1235 22 1886

10 1255 23 1857
11 1445 24 1582
12 1336 25 1675
13 1226
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The motivation for using an index number is to reduce data to an easier-to-use, more
convenient form. As an example, examine the raw data on number of business bankrupt-
cies in the United States from 1987 through 2008 shown in Table 15.15. An analyst can
describe these data by observing that, in general, the number of business bankruptcies has
been decreasing since 1987. How do the number of business bankruptcies in 1997 compare
to 1987? How do the number of business bankruptcies in 2000 compare to 1990 or 1992?
To answer these questions without index numbers, a business researcher would probably
resort to subtracting the number of business bankruptcies for the years of interest and
comparing the corresponding increases or decreases. This process can be tedious and frus-
trating for decision makers who must maximize their effort in minimal time. Using simple
index numbers, the business researcher can transform these data into values that are more
usable and make it easier to compare other years to one particular key year.

Simple Index Numbers

How are index numbers computed? The equation for computing a simple index number
follows.

SIMPLE INDEX NUMBER

where
X0 = the quantity, price, or cost in the base year
Xi = the quantity, price, or cost in the year of interest
Ii = the index number for the year of interest

Ii =
Xi

X0

(100)

Suppose bankruptcy researchers examining the data from Table 15.15 decide to com-
pute index numbers using 1987 as the base year. The index number for the year 2000 is

Table 15.16 displays all the index numbers for the data in Table 15.15, with 1987 as the
base year, along with the raw data. A cursory glance at these index numbers reveals a
decrease in the number of bankruptcies for most of the years since 1987 (because the index
has been going down). In particular, the greatest drop in number seems to have occurred
between 2005 and 2006—a drop of nearly 24 in the index. Because most people are easily
able to understand the concept of 100%, it is likely that decision makers can make quick
judgments on the number of business bankruptcies in the United states from one year
relative to another by examining the index numbers over this period.

Unweighted Aggregate Price Index Numbers

The use of simple index numbers makes possible the conversion of prices, costs, quanti-
ties, and so on for different time periods into a number scale with the base year equaling
100%. One of the drawbacks of simple index numbers, however, is that each time period
is represented by only one item or commodity. When multiple items are involved, multi-
ple sets of index numbers are possible. Suppose a decision maker is interested in com-
bining or pooling the prices of several items, creating a “market basket” in order to compare
the prices for several years. Fortunately, a technique does exist for combining several items
and determining index numbers for the total (aggregate). Because this technique is used
mostly in determining price indexes, the focus in this section is on developing aggregate
price indexes. The formula for constructing the unweighted aggregate price index
number follows.

I2000 =
X2000

X1987

(100) =
35,219

81,463
(100) = 43.2Business 

Year Bankruptcies

1987 81,463

1988 62,845

1989 62,449

1990 63,912

1991 70,605

1992 69,848

1993 62,399

1994 50,845

1995 50,516

1996 53,200

1997 53,819

1998 44,197

1999 37,639

2000 35,219

2001 39,719

2002 38,155

2003 35,037

2004 34,317

2005 39,201

2006 19,695

2007 28,322

2008 43,546

TABLE 15.15

Business Bankruptcies in 
the United States
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Suppose a state’s department of labor wants to compare the cost of family food buy-
ing over the years. Department officials decide that instead of using a single food item to
do this comparison, they will use a food basket that consists of five items: eggs, milk,
bananas, potatoes, and sugar. They gathered price information on these five items for the
years 1995, 2000, and 2008. The items and the prices are listed in Table 15.17.

From the data in Table 15.17 and the formula, the unweighted aggregate price indexes for
the years 1995, 2000, and 2008 can be computed by using 1995 as the base year. The first step
is to add together, or aggregate, the prices for all the food basket items in a given year. These
totals are shown in the last row of Table 15.17. The index numbers are constructed by using
these totals (not individual item prices):
From these figures, the unweighted aggregate price index for 2000 is computed as follows.

Weighted Aggregate Price Index Numbers

A major drawback to unweighted aggregate price indexes is that they are unweighted—that
is, equal weight is put on each item by assuming the market basket contains only one of
each item. This assumption may or may not be true. For example, a household may con-
sume 5 pounds of bananas per year but drink 50 gallons of milk. In addition, unweighted
aggregate index numbers are dependent on the units selected for various items. For exam-
ple, if milk is measured in quarts instead of gallons, the price of milk used in determining
the index numbers is considerably lower. A class of index numbers that can be used to avoid
these problems is weighted aggregate price index numbers.

Weighted aggregate price index numbers are computed by multiplying quantity weights
and item prices in determining the market basket worth for a given year. Sometimes when price
and quantity are multiplied to construct index numbers, the index numbers are referred to as
value indexes. Thus, weighted aggregate price index numbers are also value indexes.

Including quantities eliminates the problems caused by how many of each item are
consumed per time period and the units of items. If 50 gallons of milk but only 5 pounds
of bananas are consumed, weighted aggregate price index numbers will reflect those
weights. If the business researcher switches from gallons of milk to quarts, the prices will
change downward but the quantity will increase fourfold (4 quarts in a gallon).

In general, weighted aggregate price indexes are constructed by multiplying the price
of each item by its quantity and then summing these products for the market basket over
a given time period (often a year). The ratio of this sum for one time period of interest

For 2000: I2000 =
©P2000

©P1995

(100) =
3.44

2.91
(100) = 118.2

©P1995 = 2.91, ©P2000 = 3.44, and ©P2008 = 3.93.

Business Index
Year Bankruptcies Number

1987 81,463 100.0

1988 62,845 77.1

1989 62,449 76.7

1990 63,912 78.5

1991 70,605 86.7

1992 69,848 85.7

1993 62,399 76.6

1994 50,845 62.4

1995 50,516 62.0

1996 53,200 65.3

1997 53,819 66.1

1998 44,197 54.3

1999 37,639 46.2

2000 35,219 43.2

2001 39,719 48.8

2002 38,155 46.8

2003 35,037 43.0

2004 34,317 42.1

2005 39,201 48.1

2006 19,695 24.2

2007 28,322 34.8

2008 43,546 53.5

TABLE 15.16

Index Numbers for 
Business Bankruptcies 

in the United States

UNWEIGHTED AGGREGATE
PRICE INDEX NUMBER

where
Pi = the price of an item in the year of interest (i)
P0 = the price of an item in the base year (0)
Ii = the index number for the year of interest (i)

Ii =
©Pi

©P0

(100)

TABLE 15.17

Prices for a Basket 
of Food Items

Year
Item 1995 2000 2008

Eggs (dozen) .78 .86 1.06

Milk (1/2 gallon) 1.14 1.39 1.59

Bananas (per lb.) .36 .46 .49

Potatoes (per lb.) .28 .31 .36

Sugar (per lb.) .35 .42 .43

Total of Items 2.91 3.44 3.93
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(year) to a base time period of interest (base year) is multiplied by 100. The following for-
mula reflects a weighted aggregate price index computed by using quantity weights from
each time period (year).

One of the problems with this formula is the implication that new and possibly differ-
ent quantities apply for each time period. However, business researchers expend much time
and money ascertaining the quantities used in a market basket. Redetermining quantity
weights for each year is therefore often prohibitive for most organizations (even the gov-
ernment). Two particular types of weighted aggregate price indexes offer a solution to the
problem of which quantity weights to use. The first and most widely used is the Laspeyres
price index. The second and less widely used is the Paasche price index.

Laspeyres Price Index

The Laspeyres price index is a weighted aggregate price index computed by using the quan-
tities of the base period (year) for all other years. The advantages of this technique are that
the price indexes for all years can be compared, and new quantities do not have to be deter-
mined for each year. The formula for constructing the Laspeyres price index follows.

Ii =
©PiQi

©P0Q0

(100)

TABLE 15.18

Food Basket Items with
Quantity Weights

Price

Item Quantity 1995 2008

Eggs (dozen) 45 .78 1.06

Milk (1/2 gal.) 60 1.14 1.59

Bananas (per lb.) 12 .36 .49

Potatoes (per lb.) 55 .28 .36

Sugar (per lb.) 36 .35 .43

LASPEYRES PRICE INDEX
IL =

©PiQ0

©P0Q0

(100)

Notice that the formula requires the base period quantities (Q0) in both the numera-
tor and the denominator.

In Table 15.17, a food basket is presented in which aggregate price indexes are computed.
This food basket consisted of eggs, milk, bananas, potatoes, and sugar. The prices of these
items were combined (aggregated) for a given year and the price indexes were computed from
these aggregate figures. The unweighted aggregate price indexes computed on these data gave
all items equal importance. Suppose that the business researchers realize that applying equal
weight to these five items is probably not a representative way to construct this food basket
and consequently ascertain quantity weights on each food item for one year’s consumption.
Table 15.18 lists these five items, their prices, and their quantity usage weights for the base
year (1995). From these data, the business researchers can compute Laspeyres price indexes.

The Laspeyres price index for 2008 with 1995 as the base year is:

 I2008 =
©P2008Q1995

©P1995Q1995

(100) =
184.26

135.85
(100) = 135.7

 = 35.10 + 68.40 + 4.32 + 15.40 + 12.60 = 135.82
 = ©[(.78)(45) + (1.14)(60) + (.36)(12) + (.28)(55) + (.35)(36)]

©P0Q0 = ©P1995Q1995

 = 47.70 + 95.40 + 5.88 + 19.80 + 15.48 = 184.26
 = ©[(1.06)(45) + (1.59)(60) + (.49)(12) + (.36)(55) + (.43)(36)]

©PiQ0 = ©P2008Q1995
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Paasche Price Index

The Paasche price index is a weighted aggregate price index computed by using the quantities
for the year of interest in computations for a given year. The advantage of this technique is
that it incorporates current quantity figures in the calculations. One disadvantage is that
ascertaining quantity figures for each time period is expensive. The formula for computing
Paasche price indexes follows.

TABLE 15.19

Food Basket Items with 
Yearly Quantity Weights 

for 1995 and 2008

Item P1995 Q1995 P2008 Q2008

Eggs (dozen) .78 45 1.06 42

Milk (1/2 gal.) 1.14 60 1.59 57

Bananas (per lb.) .36 12 .49 13

Potatoes (per lb.) .28 55 .36 52

Sugar (per lb.) .35 36 .43 36

PAASCHE PRICE INDEX
IP =

©PiQi

©P0Qi

(100)

Suppose the yearly quantities for the basket of food items listed in Table 15.18 are
determined. The result is the quantities and prices shown in Table 15.19 for the years 1995
and 2008 that can be used to compute Paasche price index numbers.

The Paasche price index numbers can be determined for 2008 by using a base year of
1995 as follows.

For 2008:

I2008 =
©P2008Q2008

©P1995Q2008

(100) =
175.72

129.58
(100) = 135.6

 = 129.58
 = 32.76 + 64.98 + 4.68 + 14.56 + 12.60

 ©P1995Q2008 = [(.78)(42) + (1.14)(57) + (.36)(13) + (.28)(52) + (.35)(36)]
 = 44.52 + 90.63 + 6.37 + 18.72 + 15.48 = 175.72

 ©P2008Q2008 = ©[(1.06)(42) + (1.59)(57) + (.49)(13) + (.36)(52) + (.43)(36)]

DEMONSTRATION
PROBLEM 15.5

The Arapaho Valley Pediatrics Clinic has been in business for 18 years. The office
manager noticed that prices of clinic materials and office supplies fluctuate over time.
To get a handle on the price trends for running the clinic, the office manager examined
prices of six items the clinic uses as part of its operation. Shown here are the items,
their prices, and the quantities for the years 2008 and 2009. Use these data to develop
unweighted aggregate price indexes for 2009 with a base year of 2008. Compute the
Laspeyres price index for the year 2009 using 2008 as the base year. Compute the
Paasche index number for 2009 using 2008 as the base year.

2008 2009

Item Price Quantity Price Quantity

Syringes (dozen) 6.70 150 6.95 135
Cotton swabs (box) 1.35 60 1.45 65
Patient record forms (pad) 5.10 8 6.25 12
Children’s Tylenol (bottle) 4.50 25 4.95 30
Computer paper (box) 11.95 6 13.20 8
Thermometers 7.90 4 9.00 2
Totals 37.50 41.80
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Solution

Unweighted Aggregate Index for 2009:

Laspeyres Index for 2009:

Passache Index for 2009:

I2009 =
©P2009Q2009

©P2008Q2009
(100) =

1,379.60
1,299.85

(100) = 106.1

 = 1,299.85
 = 904.50 + 87.75 + 61.20 + 135.00 + 95.60 + 15.80

 + (7.90)(2)]
 ©P2008Q2009 = [(6.70)(135) + (1.35)(65) + (5.10)(12) + (4.50)(30) + (11.95)(8)

 = 1,379.60
 = 938.25 + 94.25 + 75.00 + 148.50 + 105.60 + 18.00

 + (9.00)(2)]
 ©P2009Q2009 = [(6.95)(135) + (1.45)(65) + (6.25)(12) + (4.95)(30) + (13.20)(8)

I2009 =
©P2009Q2008

©P2008Q2008
(100) =

1,418.45
1,342.6

(100) = 105.6

 = 1,342.6
 = 1,005.00 + 81.00 + 40.80 + 112.50 + 71.70 + 31.60

 + (7.90)(4)]
 ©P2008Q2008 = [(6.70)(150) + (1.35)(60) + (5.10)(8) + (4.50)(25) + (11.95)(6)

 = 1,418.45
 = 1,042.50 + 87.00 + 50.00 + 123.75 + 79.20 + 36.00

 + (9.00)(4)]
 ©P2009Q2008 = [(6.95)(150) + (1.45)(60) + (6.25)(8) + (4.95)(25) + (13.20)(6)

I2009 =
©P2009

©P2008
(100) =

41.80
37.50

(100) = 111.5

15.6 PROBLEMS 15.21 Suppose the following data represent the price of 20 reams of office paper over a
50-year time frame. Find the simple index numbers for the data.

a. Let 1950 be the base year.

b. Let 1980 be the base year.

Year Price Year Price

1950 $ 22.45 1980 $ 69.75
1955 31.40 1985 73.44
1960 32.33 1990 80.05
1965 36.50 1995 84.61
1970 44.90 2000 87.28
1975 61.24 2005 89.56

15.22 The U.S. Patent and Trademark Office reports fiscal year figures for patents issued
in the United States. Following are the numbers of patents issued for the years 1980
through 2007. Using these data and a base year of 1990, determine the simple index
numbers for each year.
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Number of Number of
Year Patents (1000s) Year Patents (1000s)

1980 66.2 1994 113.6
1981 71.1 1995 113.8
1982 63.3 1996 121.7
1983 62.0 1997 124.1
1984 72.7 1998 163.1
1985 77.2 1999 169.1
1986 76.9 2000 176.0
1987 89.4 2001 184.0
1988 84.3 2002 184.4
1989 102.5 2003 187.0
1990 99.1 2004 181.3
1991 106.7 2005 157.7
1992 107.4 2006 196.4
1993 109.7 2007 182.9

15.23 Using the data that follow, compute the aggregate index numbers for the four types
of meat. Let 1995 be the base year for this market basket of goods.

Year 
Items 1995 2002 2009

Ground beef (per lb.) 1.53 1.40 2.17
Sausage (per lb.) 2.21 2.15 2.51
Bacon (per lb.) 1.92 2.68 2.60
Round steak (per lb.) 3.38 3.10 4.00

15.24 Suppose the following data are prices of market goods involved in household
transportation for the years 2001 through 2009. Using 2003 as a base year, compute
aggregate transportation price indexes for this data.

Year
Items 2001 2002 2003 2004 2005 2006 2007 2008 2009

Gasoline (per gal.) 1.10 1.16 1.23 1.23 1.08 1.56 1.85 2.59 2.89
Oil (per qt.) 1.58 1.61 1.78 1.77 1.61 1.71 1.90 2.05 2.08
Transmission fluid 1.80 1.82 1.98 1.96 1.94 1.90 1.92 1.94 1.96

(per qt.)
Radiator coolant 7.95 7.96 8.24 8.21 8.19 8.05 8.12 8.10 8.24

(per gal.)

15.25 Calculate Laspeyres price indexes for 2007–2009 from the following data. Use 2000
as the base year.

Quantity Price

Item 2000 2000 2007 2008 2009

1 21 $0.50 $0.67 $0.68 $0.71
2 6 1.23 1.85 1.90 1.91
3 17 0.84 .75 .75 .80
4 43 0.15 .21 .25 .25

15.26 Calculate Paasche price indexes for 2008 and 2009 using the following data and
2000 as the base year.

2008 2009

Item 2000 Price Price Quantity Price Quantity

1 $22.50 $27.80 13 $28.11 12
2 10.90 13.10 5 13.25 8
3 1.85 2.25 41 2.35 44
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In observing the fit of this trend line and the time-series plot,
it is evident that there appears to be more of a quadratic trend
than a linear trend. Therefore, a Minitab-produced quadratic
trend model was run and the results are presented below. Note

In searching for the most effective
forecasting technique to use to fore-
cast either the carbon monoxide

emission or the nitrogen oxide, it is useful to determine whether
a trend is evident in either set of time-series data. Minitab’s trend
analysis output is presented here for nitrogen oxides.

Forecasting Air Pollution
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Quadratic Trend Model
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that the error measures are all smaller for the quadratic model
and that the curve fits the data much better than does the linear
model.
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Various smoothing techniques can be used to forecast
time-series data. After exploring several moving average mod-
els to predict carbon monoxide emissions, it was determined
that a 3-year moving average fits the data relatively well. The

results of a Minitab moving average graphical analysis of car-
bon monoxide using a 3-year moving average is shown below.
Note that the forecasts shadow the actual values quite well and
actually intersect them in two locations.
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The effectiveness of exponential smoothing as a forecasting
tool for nitrogen oxide emissions was tested using Minitab for
several values of . Through this analysis, it was determined
that the best forecasts were obtained for values of near 1, indi-
cating that the actual value for the previous time period was a
much stronger contributor to the forecast than the previous

a

a

time period’s forecast. Shown below is a Minitab-produced
graphical analysis of an exponential smoothing forecast of the
nitrogen oxide data using an alpha of .95. You are encouraged
to explore other methods for forecasting nitrogen oxide and
carbon monoxide emissions.
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The true test of a forecast is the accuracy of the predic-
tion. Until the actual value is obtained for a given time
period, the accuracy of the forecast is unknown. Many
forecasters make predictions in society, including card
readers, religious leaders, and self-proclaimed prophets.
The proof of the forecast is in the outcome. The same
holds true in the business world. Forecasts are made
about everything from market share to interest rates to
number of international air travelers. Many businesses
fail because of faulty forecasts.

Forecasting is perhaps as much an art as a science. To
keep forecasting ethical, the consumer of the forecast
should be given the caveats and limitations of the forecast.

The forecaster should be honestly cautious in selling the
predictions to a client. In addition, the forecaster should be
constantly on the lookout for changes in the business set-
ting being modeled and quickly translate and incorporate
those changes into the forecasting model.

Unethical behavior can occur in forecasting when par-
ticular data are selected to develop a model that has been
predetermined to produce certain results. As mentioned
previously, statistics can be used to “prove” almost any-
thing. The ethical forecaster lets the data drive the model
and is constantly seeking honest input from new variables
to revise the forecast. He or she strives to communicate the
limitations of both the forecasts and the models to clients.

ETHICAL CONSIDERATIONS

SUMMARY

Time-series data are data that have been gathered at regular
intervals over a period of time. It is generally believed that
time-series data are composed of four elements—trend, cycli-
cal effects, seasonality, and irregularity. Trend is the long-term
general direction of the time-series data. Cyclical effects are
the business and economic cycles that occur over periods of
more than 1 year. Seasonal effects are patterns or cycles of data
behavior that occur over time periods of less than 1 year.
Irregular fluctuations are unaccounted-for “blips” or varia-
tions that occur over short periods of time.

One way to establish the validity of a forecast is to examine
the forecasting error. The error of a forecast is the difference
between the actual value and the forecast value. Computing a
value to measure forecasting error can be done in several dif-
ferent ways. This chapter presents mean absolute deviation
and mean square error for this task.

Regression analysis with either linear or quadratic models
can be used to explore trend. Regression trend analysis is a
special case of regression analysis in which the dependent
variable is the data to be forecast and the independent variable
is the time periods numbered consecutively from 1 to k, where
k is the number of time periods. For the quadratic model, a
second independent variable is constructed by squaring the
values in the first independent variable, and both independent
variables are included in the analysis.

One group of time-series forecasting methods contains
smoothing techniques. Among these techniques are naïve
models, averaging techniques, and simple exponential
smoothing. These techniques do much better if the time series
data are stationary or show no significant trend or seasonal
effects. Naïve forecasting models are models in which it is
assumed that the more recent time periods of data represent
the best predictions or forecasts for future outcomes.

Simple averages use the average value for some given length
of previous time periods to forecast the value for the next
period. Moving averages are time period averages that are
revised for each time period by including the most recent

value(s) in the computation of the average and deleting the
value or values that are farthest away from the present time
period. A special case of the moving average is the weighted
moving average, in which different weights are placed on the
values from different time periods.

Simple (single) exponential smoothing is a technique in
which data from previous time periods are weighted exponen-
tially to forecast the value for the present time period. The
forecaster has the option of selecting how much to weight
more recent values versus those of previous time periods.

Decomposition is a method for isolating the four possible
effects in time-series data, trend, cyclical effects, seasonality,
and irregular fluctuations.

Autocorrelation or serial correlation occurs when the error
terms from forecasts are correlated over time. In regression
analysis, this effect is particularly disturbing because one of the
assumptions is that the error terms are independent. One way
to test for autocorrelation is to use the Durbin-Watson test.

A number of methods attempt to overcome the effects of
autocorrelation on the data. One way is to determine whether
at least one independent variable is missing and, if so, include
it or them in the model. Another way is to transform the vari-
ables. One transformation technique is the first-differences
approach, in which each value of X is subtracted from the suc-
ceeding time period value of X and the differences are used as
the values of the X variable. The same approach is used to
transform the Y variable. The forecasting model is then devel-
oped from the transformed variables.

Autoregression is a forecasting technique in which time-
series data are predicted by independent variables that are
lagged versions of the original dependent variable data. A
variable that is lagged one period is derived from values of the
previous time period. Other variables can be lagged two or
more periods.

Index numbers can be used to translate raw data into num-
bers that are more readily comparable. Simple index numbers
are constructed by creating the ratio of the raw data value for
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a given time period to the raw data value for the base period
and multiplying the ratio by 100. The index number for the
base time period is designated to be 100.

Unweighted aggregate price index numbers are con-
structed by summing the prices of several items for a time
period and comparing that sum to the sum of the prices of the
same items during a base time period and multiplying the

ratio by 100. Weighted aggregate price indexes are index num-
bers utilizing the prices of several items, and the items are
weighted by their quantity usage.

The Laspeyres price index uses the quantity weights from
the base year in all calculations. The Paasche price index uses
the quantity weights for the current time period for both the
current time period and the base time period in calculations.

KEY TERMS

deseasonalized data
Durbin-Watson test
error of an individual

forecast
exponential smoothing
first-differences approach
forecasting
forecasting error
index number
irregular fluctuations
Laspeyres price index

mean absolute deviation
(MAD)

mean square error (MSE)
moving average
naïve forecasting models
Paasche price index
seasonal effects
serial correlation
simple average
simple average model
simple index number

smoothing techniques
stationary
time-series data
trend
unweighted aggregate price

index number
weighted aggregate price

index numbers
weighted moving average

autocorrelation
autoregression
averaging models
cycles
cyclical effects
decomposition

FORMULAS

Individual forecast error

Mean absolute deviation

Mean square error

MSE =
©e2

i

Number of Forecasts

MAD =
© ƒ ei ƒ

Number of Forecasts

et = Xt - Ft

Exponential smoothing

Durbin-Watson test

D =
a

n

t=2

(et - et-1)
2

a
n

t=1

e2
t

Ft +1 = a # Xt + (1 - a) # Ft

SUPPLEMENTARY PROBLEMS

CALCULATING THE STATISTICS

15.27 Following are the average yields of long-term new cor-
porate bonds over a several-month period published by
the Office of Market Finance of the U.S. Department of
the Treasury.

Month Yield Month Yield

1 10.08 7 9.37

2 10.05 8 8.55

3 9.24 9 8.36

4 9.23 10 8.59

5 9.69 11 7.99

6 9.55 12 8.12

Month Yield Month Yield

13 7.91 19 7.35

14 7.73 20 7.04

15 7.39 21 6.88

16 7.48 22 6.88

17 7.52 23 7.17

18 7.48 24 7.22

a. Explore trends in these data by using regression trend
analysis. How strong are the models? Is the quadratic
model significantly stronger than the linear trend
model?(continued)



634 Chapter 15 Time-Series Forecasting and Index Numbers

b. Use a 4-month moving average to forecast values for
each of the ensuing months.

c. Use simple exponential smoothing to forecast
values for each of the ensuing months. Let a = .3
and then let Which weight produces better
forecasts?

d. Compute MAD for the forecasts obtained in parts
(b) and (c) and compare the results.

e. Determine seasonal effects using decomposition on
these data. Let the seasonal effects have four periods.
After determining the seasonal indexes, deseasonalize
the data.

15.28 Compute index numbers for the following data using
1995 as the base year.

Year Quantity Year Quantity

1995 2073 2003 2520

1996 2290 2004 2529

1997 2349 2005 2483

1998 2313 2006 2467

1999 2456 2007 2397

2000 2508 2008 2351

2001 2463 2009 2308

2002 2499

15.29 Compute unweighted aggregate price index numbers
for each of the given years using 2005 as the base
year.

Item 2005 2006 2007 2008 2009

1 3.21 3.37 3.80 3.73 3.65

2 .51 .55 .68 .62 .59

3 .83 .90 .91 1.02 1.06

4 1.30 1.32 1.33 1.32 1.30

5 1.67 1.72 1.90 1.99 1.98

6 .62 .67 .70 .72 .71

15.30 Using the following data and 2006 as the base year,
compute the Laspeyres price index for 2009 and the
Paasche price index for 2008.

2006 2007
Item Price Quantity Price Quantity

1 $2.75 12 $2.98 9

2 0.85 47 0.89 52

3 1.33 20 1.32 28

a = .7.

2008 2009
Item Price Quantity Price Quantity

1 $3.10 9 $3.21 11

2 0.95 61 0.98 66

3 1.36 25 1.40 32

TESTING YOUR UNDERSTANDING

15.31 The following data contain the quantity (million
pounds) of U.S. domestic fish caught annually over a
25-year period as published by the National Oceanic
and Atmospheric Administration.
a. Use a 3-year moving average to forecast the quantity

of fish for the years 1983 through 2004 for these data.
Compute the error of each forecast and then deter-
mine the mean absolute deviation of error for the
forecast.

b. Use exponential smoothing and to forecast
the data from 1983 through 2004. Let the forecast for
1981 equal the actual value for 1980. Compute the
error of each forecast and then determine the mean
absolute deviation of error for the forecast.

c. Compare the results obtained in parts (a) and (b) us-
ing MAD. Which technique seems to perform better?
Why?

Year Quantity Year Quantity

1980 6,559 1993 10,209

1981 6,022 1994 10,500

1982 6,439 1995 9,913

1983 6,396 1996 9,644

1984 6,405 1997 9,952

1985 6,391 1998 9,333

1986 6,152 1999 9,409

1987 7,034 2000 9,143

1988 7,400 2001 9,512

1989 8,761 2002 9,430

1990 9,842 2003 9,513

1991 10,065 2004 10,085

1992 10,298

15.32 The U.S. Department of Commerce publishes a series
of census documents referred to as Current Industrial
Reports. Included in these documents are the manufac-
turers’ shipments, inventories, and orders over a 5-year
period. Displayed here is a portion of these data repre-
senting the shipments of chemicals and allied products
from January of year 1 through December of year 5.
Use time-series decomposition methods to develop the
seasonal indexes for these data.

a = .2
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Chemicals Chemicals
and Allied and Allied
Products Products

Time Period ($ billion) Time Period ($ billion)

January (year 1) 23.701 January (year 2) 23.347

February 24.189 February 24.122

March 24.200 March 25.282

April 24.971 April 25.426

May 24.560 May 25.185

June 24.992 June 26.486

July 22.566 July 24.088

August 24.037 August 24.672

September 25.047 September 26.072

October 24.115 October 24.328

November 23.034 November 23.826

December 22.590 December 24.373

January (year 3) 24.207 January (year 4) 25.316

February 25.772 February 26.435

March 27.591 March 29.346

April 26.958 April 28.983

May 25.920 May 28.424

June 28.460 June 30.149

July 24.821 July 26.746

August 25.560 August 28.966

September 27.218 September 30.783

October 25.650 October 28.594

November 25.589 November 28.762

December 25.370 December 29.018

Chemicals 
and Allied 
Products 

Time Period ($ billion)

January (year 5) 28.931

February 30.456

March 32.372

April 30.905

May 30.743

June 32.794

July 29.342

August 30.765

September 31.637

October 30.206

November 30.842

December 31.090

15.33 Use the seasonal indexes computed to deseasonalize the
data in Problem 15.32.

15.34 Determine the trend for the data in Problem 15.32
using the deseasonalized data from Problem 15.33.
Explore both a linear and a quadratic model in an
attempt to develop the better trend model.

15.35 Shown here are retail price figures and quantity esti-
mates for five different food commodities over 3 years.
Use these data and a base year of 2007 to compute

unweighted aggregate price indexes for this market
basket of food. Using a base year of 2007, calculate
Laspeyres price indexes and Paasche price indexes for
2008 and 2009.

2007 2008 2009

Item Price Quantity Price Quantity Price Quantity

Margarine 1.26 21 1.32 23 1.39 22
(lb.)

Shortening 0.94 5 0.97 3 1.12 4
(lb.)

Milk (1/2 gal.) 1.43 70 1.56 68 1.62 65

Cola (2 liters) 1.05 12 1.02 13 1.25 11

Potato chips 2.81 27 2.86 29 2.99 28
(12 oz.)

15.36 Given below are data on the number of business estab-
lishments (millions) and the self-employment rate (%)
released by the Small Business Administration, Office
of Advocacy, for a 21-year period of U.S. business
activity. Develop a regression model to predict the self-
employment rate by the number of business establish-
ments. Use this model to predict the self-employment
rate for a year in which there are 7.0 (million) business
establishments. Discuss the strength of the regression
model. Use these data and the regression model to
compute a Durbin-Watson test to determine whether
significant autocorrelation is present. Let alpha be .05.

Number of Self-
Establishments Employment Rate

(millions) (%)

4.54317 8.1

4.58651 8.0

4.63396 8.1

5.30679 8.2

5.51772 8.2

5.70149 8.0

5.80697 7.9

5.93706 8.0

6.01637 8.2

6.10692 8.1

6.17556 8.0

6.20086 8.1

6.31930 7.8

6.40123 8.0

6.50907 8.1

6.61272 7.9

6.73848 7.8

6.89487 7.7

6.94182 7.5

7.00844 7.2

7.07005 6.9
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15.37 Shown here are the consumer price indexes (CPIs) for
housing for the years 1988 through 2005 from the
Bureau of Labor Statistics Data Web site. Use the data
to answer the following questions.
a. Compute the 4-year moving average to forecast the

CPIs from 1992 through 2005.
b. Compute the 4-year weighted moving average to

forecast the CPIs from 1992 through 2005. Weight
the most recent year by 4, the next most recent year
by 3, the next year by 2, and the last year of the four
by 1.

c. Determine the errors for parts (a) and (b). Compute
MSE for parts (a) and (b). Compare the MSE values
and comment on the effectiveness of the moving
average versus the weighted moving average for these
data.

Year Housing CPI Year Housing CPI

1988 118.5 1997 156.8

1989 123.0 1998 160.4

1990 128.5 1999 163.9

1991 133.6 2000 169.6

1992 137.5 2001 176.4

1993 141.2 2002 180.3

1994 144.8 2003 184.8

1995 148.5 2004 189.5

1996 152.8 2005 195.7

15.38 In the Survey of Current Business, the U.S. Department of
Commerce publishes data on farm commodity prices.
Given are the cotton prices from November of year 1
through February of year 4. The prices are indexes with
a base of 100 from the period of 1910 through 1914. Use
these data to develop autoregression models for a 1-
month lag and a 4-month lag. Compare the results of
these two models. Which model seems to yield better
predictions? Why?

Time Cotton
Period Prices

November (year 1) 552

December 519

January (year 2) 505

February 512

March 541

April 549

May 552

June 526

July 531

August 545

September 549

October 570

November 576

December 568

Time Cotton
Period Prices

January (year 3) 571

February 573

March 582

April 587

May 592

June 570

July 560

August 565

September 547

October 529

November 514

December 469

January (year 4) 436

February 419

15.39 The U.S. Department of Commerce publishes data on
industrial machinery and equipment. Shown here are
the shipments (in $ billions) of industrial machinery
and equipment from the first quarter of year 1 through
the fourth quarter of year 6. Use these data to deter-
mine the seasonal indexes for the data through time-
series decomposition methods. Use the four-quarter
centered moving average in the computations.

Industrial Machinery and 
Time Period Equipment Shipments

1st quarter (year 1) 54.019

2nd quarter 56.495

3rd quarter 50.169

4th quarter 52.891

1st quarter (year 2) 51.915

2nd quarter 55.101

3rd quarter 53.419

4th quarter 57.236

1st quarter (year 3) 57.063

2nd quarter 62.488

3rd quarter 60.373

4th quarter 63.334

1st quarter (year 4) 62.723

2nd quarter 68.380

3rd quarter 63.256

4th quarter 66.446

1st quarter (year 5) 65.445

2nd quarter 68.011

3rd quarter 63.245

4th quarter 66.872

1st quarter (year 6) 59.714

2nd quarter 63.590

3rd quarter 58.088

4th quarter 61.443(continued)
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15.40 Use the seasonal indexes computed to deseasonalize the
data in Problem 15.39.

15.41 Use both a linear and quadratic model to explore
trends in the deseasonalized data from Problem 15.40.
Which model seems to produce a better fit of the
data?

15.42 The Board of Governors of the Federal Reserve System
publishes data on mortgage debt outstanding by type of
property and holder. The following data give the
amounts of residential nonfarm debt (in $ billions)
held by savings institutions in the United States over a
10-year period. Use these data to develop an autore-
gression model with a one-period lag. Discuss the
strength of the model.

Year Debt

1 529

2 554

3 559

4 602

5 672

6 669

7 600

8 538

9 490

10 470

15.43 The data shown here, from the Investment Company
Institute, show that the equity fund assets of mutual
funds have been growing since 1981. At the same time,
money market funds have been increasing since 1980.
Use these data to develop a regression model to forecast
the equity fund assets by money market funds. All fig-
ures are given in billion-dollar units. Conduct a
Durbin-Watson test on the data and the regression
model to determine whether significant autocorrela-
tion is present. Let a = .01.

Money 
Equity Market 

Year Funds Funds

1980 44.4 76.4

1981 41.2 186.2

1982 53.7 219.8

1983 77.0 179.4

1984 83.1 233.6

1985 116.9 243.8

1986 161.5 292.2

1987 180.7 316.1

1988 194.8 338.0

1989 249.0 428.1

1990 245.8 498.3

1991 411.6 542.4

Money 
Equity Market 

Year Funds Funds

1992 522.8 546.2

1993 749.0 565.3

1994 866.4 611.0

1995 1,269.0 753.0

1996 1,750.9 901.8

1997 2,399.3 1,058.9

1998 2,978.2 1,351.7

1999 4,041.9 1,613.2

2000 3,962.3 1,845.3

2001 3,418.2 2,285.3

2002 2,662.5 2,272.0

2003 3,684.2 2,052.0

2004 4,384.1 1,913.2

2005 4,940.0 2,040.5

15.44 The purchasing-power value figures for the minimum
wage in year 18 dollars for the years 1 through 18 are
shown here. Use these data and exponential smooth-
ing to develop forecasts for the years 2 through 18.
Try a = .1, .5, and .8, and compare the results using
MAD. Discuss your findings. Select the value of alpha
that worked best and use your exponential smoothing
results to predict the figure for 19.

Purchasing Purchasing 
Year Power Year Power

1 $6.04 10 $4.34

2 5.92 11 4.67

3 5.57 12 5.01

4 5.40 13 4.86

5 5.17 14 4.72

6 5.00 15 4.60

7 4.91 16 4.48

8 4.73 17 4.86

9 4.55 18 5.15

INTERPRETING THE OUTPUT

15.45 Shown on the following page is the Excel output for a
regression analysis to predict the number of business
bankruptcy filings over a 16-year period by the number
of consumer bankruptcy filings. How strong is the
model? Note the residuals. Compute a Durbin-Watson
statistic from the data and discuss the presence of auto-
correlation in this model.(continued)
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ANALYZING THE DATABASES

1. Use the Agricultural time-series database and the variable
Green Beans to forecast the number of green beans for
period 169 by using the following techniques.

a. Five-period moving average
b. Simple exponential smoothing with a = .6
c. Time-series linear trend model
d. Decomposition

2. Use decomposition on Carrots in the Agricultural database
to determine the seasonal indexes. These data actually rep-
resent 14 years of 12-month data. Do the seasonal indexes
indicate the presence of some seasonal effects? Run an
autoregression model to predict Carrots by a 1-month lag

and another by a 12-month lag. Compare the two models.
Because vegetables are somewhat seasonal, is the 12-month
lag model significant?

3. Use the Energy database to forecast 2008 U.S. coal produc-
tion by using simple exponential smoothing of previous
U.S. coal production data. Let a = .2 and a = .8. Compare
the forecast with the actual figure. Which of the two mod-
els produces the forecast with the least error?

4. Use the International Labor database to develop a regression
model to predict the unemployment rate for Germany by
the unemployment rate of Italy. Test for autocorrelation and
discuss its presence or absence in this regression analysis.

see www.wiley.com/college/black and WileyPLUS

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.529
R Square 0.280
Adjusted R Square 0.228
Standard Error 8179.84
Observations 16

ANOVA

MS F
Significance

F

Regression 5.44 0.0351
Residual

364069877.4
66909812.8

Total

SS

364069877.4
936737379.6
1300807257

Coefficients Standard Error t Stat P-value

Intercept 15.17
Year

75532.43621
−0.01574

4980.08791
0.00675 −2.33

0.0000
0.0351

Predicted Bus.
BankruptciesObservation Residuals

1
2

70638.58
71024.28

−1338.6
−8588.3

3
4

71054.61
70161.99

−7050.6
1115.0

5
6

68462.72
67733.25

12772.3
14712.8

7
8

66882.45
65834.05

−3029.4
−2599.1

9 64230.61
61801.70

622.4
9747.3

61354.16
62738.76

9288.8
−434.8

63249.36
61767.01

−10875.4
−9808.0

10
11
12
13
14
15
16

57826.69
54283.80

−4277.7
−256.8

df

1
14
15

RESIDUAL OUTPUT
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CASE

The DeBourgh Manufacturing Company was founded in
1909 as a metal-fabricating company in Minnesota by the four
Berg brothers. In the 1980s, the company ran into hard times,
as did the rest of the metal-fabricating industry. Among the
problems that DeBourgh faced were declining sales, deterio-
rating labor relations, and increasing costs. Labor unions had
resisted cost-cutting measures. Losses were piling up in the
heavy job-shop fabrication division, which was the largest of
the company’s three divisions. A division that made pedes-
trian steel bridges closed in 1990. The remaining company
division, producer of All-American lockers, had to move to a
lower-cost environment.

In 1990, with the company’s survival at stake, the firm
made a risky decision and moved everything from its high-
cost location in Minnesota to a lower-cost area in La Junta,
Colorado. Eighty semitrailer trucks were used to move equip-
ment and inventory 1000 miles at a cost of $1.2 million. The
company was relocated to a building in La Junta that had
stood vacant for 3 years. Only 10 of the Minnesota workers
transferred with the company, which quickly hired and trained
80 more workers in La Junta. By moving to La Junta, the com-
pany was able to go nonunion.

DeBourgh also faced a financial crisis. A bank that had been
loaning the company money for 35 years would no longer do
so. In addition, a costly severance package was worked out with
Minnesota workers to keep production going during the move.
An internal stock-purchase “earnout” was arranged between
company president Steven C. Berg and his three aunts, who
were the other principal owners.

The roof of the building that was to be the new home of
DeBourgh Manufacturing in La Junta was badly in need of
repair. During the first few weeks of production, heavy rains fell

on the area and production was all but halted. However,
DeBourgh was able to overcome these obstacles. One year later,
locker sales achieved record-high sales levels each month. The
company is now more profitable than ever with sales topping 
$6 million. Much credit has been given to the positive spirit of
teamwork fostered among its approximately 80 employees.
Emphasis shifted to employee involvement in decision making,
quality, teamwork, employee participation in compensation
action, and shared profits. In addition, DeBourgh became a
more socially responsible company by doing more for the town
in which it is located and by using paints that are more environ-
mentally friendly.

Discussion

1. After its move in 1990 to La Junta, Colorado, and its new
initiatives, the DeBourgh Manufacturing Company
began an upward climb of record sales. Suppose the 
figures shown here are the DeBourgh monthly sales 
figures from January 2001 through December 2009 
(in $1,000s). Are any trends evident in the data? Does
DeBourgh have a seasonal component to its sales? Shown
after the sales figures is Minitab output from a decompo-
sition analysis of the sales figures using 12-month sea-
sonality. Next an Excel graph displays the data with a
trend line. Examine the data, the output, and any addi-
tional analysis you feel is helpful, and write a short report
on DeBourgh sales. Include a discussion of the general
direction of sales and any seasonal tendencies that might
be occurring.

DEBOURGH MANUFACTURING COMPANY

Month 2001 2002 2003 2004 2005 2006 2007 2008 2009

January 139.7 165.1 177.8 228.6 266.7 431.8 381.0 431.8 495.3

February 114.3 177.8 203.2 254.0 317.5 457.2 406.4 444.5 533.4

March 101.6 177.8 228.6 266.7 368.3 457.2 431.8 495.3 635.0

April 152.4 203.2 279.4 342.9 431.8 482.6 457.2 533.4 673.1

May 215.9 241.3 317.5 355.6 457.2 533.4 495.3 558.8 749.3

June 228.6 279.4 330.2 406.4 571.5 622.3 584.2 647.7 812.8

July 215.9 292.1 368.3 444.5 546.1 660.4 609.6 673.1 800.1

August 190.5 317.5 355.6 431.8 482.6 520.7 558.8 660.4 736.6

September 177.8 203.2 241.3 330.2 431.8 508.0 508.0 609.6 685.8

October 139.7 177.8 215.9 330.2 406.4 482.6 495.3 584.2 635.0

November 139.7 165.1 215.9 304.8 393.7 457.2 444.5 520.7 622.3

December 152.4 177.8 203.2 292.1 406.4 431.8 419.1 482.6 622.3
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2. Suppose DeBourgh accountants computed a per-unit cost
of lockers for each year since 1996, as reported here. Use
techniques in this chapter to analyze the data. Forecast the
per-unit labor costs through the year 2009. Use smooth-
ing techniques, moving averages, trend analysis, and any
others that seem appropriate. Calculate the error of the
forecasts and determine which forecasting method seems
to do the best job of minimizing error. Study the data and
explain the behavior of the per-unit labor cost since 1996.
Think about the company history and objectives since
1996.

Per-Unit Per-Unit 
Year Labor Cost Year Labor Cost

1996 $80.15 2003 $59.84

1997 85.29 2004 57.29

1998 85.75 2005 58.74

1999 64.23 2006 55.01

2000 63.70 2007 56.20

2001 62.54 2008 55.93

2002 60.19 2009 55.60

Source: Adapted from “DeBourgh Manufacturing Company: A Move That
Saved a Company,” Real-World Lessons for America’s Small Businesses:
Insights from the Blue Chip Enterprise Initiative. Published by Nation’s
Business magazine on behalf of Connecticut Mutual Life Insurance Company
and the U.S. Chamber of Commerce in association with the Blue Chip
Enterprise Initiative, 1992. See also DeBourgh, available at http://www.
debourgh.com, and the Web site containing Colorado Springs top business
stories, available at http://www.csbj.com/1998/981113/top_stor.htm.

USING THE COMPUTER

EXCEL
■ Excel has the capability of forecasting using several of the

techniques presented in this chapter. Two of the forecasting
techniques are accessed using the Data Analysis tool, and
two other forecasting techniques are accessed using the
Insert Function.

■ To use the Data Analysis tool, begin by selecting the Data
tab on the Excel worksheet. From the Analysis panel at the
right top of the Data tab worksheet, click on Data
Analysis. If your Excel worksheet does not show the Data
Analysis option, then you can load it as an add-in follow-
ing directions given in Chapter 2.

■ To do exponential smoothing, select Exponential
Smoothing from the Data Analysis pulldown menu. In the
dialog box, input the location of the data to be smoothed
in Input Range. Input the value of the dampening factor in
Damping factor. Excel will default to .3. Input the location
of the upper left cell of the output table in the Output
Range space. The output consists of forecast values of the
data. If you check Standard Errors, a second column of
output will be given of standard errors.

■ To compute moving averages, select Moving Average from
the Data Analysis pulldown menu. In the dialog box, input
the location of the data for which the moving averages are
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to be computed in Input Range. Record how many values
you want to include in computing the moving average in
Interval. The default number is three values. Input the
location of the upper left cell of the output table in Output
Range. The output consists of the moving averages. If you
check Standard Errors, a second column of output will be
given of standard errors.

■ To use the Insert Function ( fx) to compute forecasts
and/or to fit a trend line, go to the Formulas tab on an
Excel worksheet (top center tab). The Insert Function is on
the far left of the menu bar. In the Insert Function dialog
box at the top, there is a pulldown menu where it says Or
select a category. From the pulldown menu associated
with this command, select Statistical.

■ To compute forecasts using linear regression, select
FORECAST from the Insert Function’s Statistical menu.
In the first line of the FORECAST dialog box, place the
value of x for which you want a predicted value in X. An
entry here is required. On the second line, place the loca-
tion of the y values to be used in the development of the
regression model in Known_y’s. On the third line, place
the location of the x values to be used in the development
of the regression model in Known_x’s. The output consists
of the predicted value.

■ To fit a trend line to data, select TREND from the Insert
Function’s Statistical menu. On the first line of the
TREND dialog box, place the location of the y values to
be used in the development of the regression model in
Known_y’s. On the second line, place the location of the
x values to be used in the development of the regression
model in Known_x’s. Note that the x values can consist of
more than one column if you want to fit a polynomial
curve. To accomplish this, place squared values of x,
cubed values of x, and so on as desired in other columns,
and include those columns in Known_x. On the third
line, place the values for which you want to return corre-
sponding y values in New_x’s. In the fourth line, place
TRUE in Const if you want to get a value for the constant
as usual (default option). Place FALSE if you want to set
b0 to zero.

MINITAB
■ There are several forecasting techniques available through

Minitab. These techniques are accessed in the following
way: select Stat from the menu bar, and from the ensuing
pulldown menu, select Time Series. From this pulldown
menu select one of several forecasting techniques as
detailed below.

■ To begin a Time Series Plot, select which of the four types
of plots you want from Simple, Multiple, With Groups, or
Multiple with Groups. Enter the column containing the
values that you want to plot in Series. Other options
include Time/Scale, where you can determine what time
frame you want to use along the x-axis; Labels, where you

input titles and data labels; Data View, where you can
choose how you want the graph to appear with options of
symbols, connect line, or project lines; Multiple Graphs;
and Data Options.

■ To begin a Trend Analysis, place the location of the
time-series data in the Variables slot. Under Model Type,
select the type of model you want to create from Linear,
Quadratic, Exponential growth, or S-Curve. You can
generate forecasts from your model by checking
Generate forecasts and inserting how many forecasts
you want and the starting point. Other options include
Time, where you can determine what time frame you
want to use along the x-axis; Options, where you input
titles and data weights; Storage, where you can choose to
store fits and/or residuals; Graphs, where you can choose
from several graphical display options; and Results,
which offers you three different ways to display the
results.

■ To begin a Decomposition, place the location of the time-
series data in the Variables slot. Choose the Model Type
by selecting from Multiplicative, Additive, Trend plus
seasonal, or Seasonal only. You can generate forecasts
from your model by checking Generate forecasts and
inserting how many forecasts you want and the starting
point. Other options include Time, where you can deter-
mine what time frame you want to use along the x-axis;
Options, where you input the title and the seasonal loca-
tion of the first observation; Storage, where you can
choose to store trend line, detrended data, seasonals, sea-
sonally adjusted data, fits, and residuals; Graphs, where
you can choose from several graphical display options;
and Results, which offers you three different ways to dis-
play the results.

■ To begin a Moving Average, place the location of the time-
series data in the Variables slot. Enter a positive integer to
indicate desired length for the moving average in the MA
Length slot. Check the Center the moving averages box if
you want to place the moving average values at the period
that is in the center of the range rather than at the end of
the range. You can generate forecasts from your model by
checking Generate forecasts and inserting how many
forecasts you want and the starting point. Other options
include Time, where you can determine what time frame
you want to use along the x-axis; Options, where you
input the title; Storage, where you can choose to store
moving averages, fits, and residuals; Graphs, where you
can choose from several graphical display options; and
Results, which offers you three different ways to display
the results.

■ To begin Single Exp Smoothing, place the location of the
time-series data in the Variables slot. Under Weight to Use
in Smoothing, if you choose Optimal ARIMA, the fore-
casts will use the default weight, which Minitab computes
by fitting an ARIMA (0, 1, 1) model to the data. With this
option, Minitab calculates the initial smoothed value by
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backcasting. If you choose Use, you can enter a specific
weight that is between 0 and 2. You can generate forecasts
from your model by checking Generate forecasts and
inserting how many forecasts you want and the starting
point. Other options include Time, where you can deter-
mine what time frame you want to use along the x-axis;
Options, where you input the title; Storage, where you can
choose to store smoothed data, fits, and residuals; Graphs,
where you can choose from several graphical display
options; and Results, which offers you three different ways
to display the results.

■ To begin Differences, enter the column containing the
variable for which you want to compute differences in
Series. Enter a storage column for the differences in the
box beside Store differences in. In the box beside Lag,
enter the value for the lag. The default lag value is 1.

■ To begin Lag, enter the column containing the variable that
you want to lag in Series. Enter the storage column for the
lags in Store lags in. Enter the value for the lag in Lag. The
default lag value is 1.

■ To begin Autocorrelation, enter the column containing the
time series in Series. If you want to use the default number
of lags, choose Default number of lags. This number is n/4
for a series with less than or equal to 240 observations or

for a series with more than 240 observations,
where n is the number of observations in the series. By
selecting Number of lags, you can enter the number of lags
to use instead of the default. The maximum number of lags
is n - 1. Check Store ACF to store the autocorrelation val-
ues in the next available column. Check Store t Statistics to
store the t statistics. Check Store Ljung-Box Q Statistics to
store the Ljung-Box Q statistics.
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